时空孤子的耗散非线性无抽运

Xuzhen Cao, Chunyu Jia, Ying Hu, Zhaoxin Liang
{"title":"时空孤子的耗散非线性无抽运","authors":"Xuzhen Cao, Chunyu Jia, Ying Hu, Zhaoxin Liang","doi":"arxiv-2409.03450","DOIUrl":null,"url":null,"abstract":"The interplay between topology and soliton is a central topic in nonlinear\ntopological physics. So far, most studies have been confined to conservative\nsettings. Here, we explore Thouless pumping of dissipative temporal solitons in\na nonconservative one-dimensional optical system with gain and spectral\nfiltering, described by the paradigmatic complex Ginzburg-Landau equation. Two\ndissipatively induced nonlinear topological phase transitions are identified.\nFirst, when varying dissipative parameters across a threshold, the soliton\ntransitions from being trapped in time to quantized drifting. This quantized\ntemporal drift remains robust, even as the system evolves from a single-soliton\nstate into multi-soliton state. Second, a dynamically emergent phase transition\nis found: the soliton is arrested until a critical point of its evolution,\nwhere a transition to topological drift occurs. Both phenomena uniquely arise\nfrom the dynamical interplay of dissipation, nonlinearity and topology.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"319 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative Nonlinear Thouless Pumping of Temporal Solitons\",\"authors\":\"Xuzhen Cao, Chunyu Jia, Ying Hu, Zhaoxin Liang\",\"doi\":\"arxiv-2409.03450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interplay between topology and soliton is a central topic in nonlinear\\ntopological physics. So far, most studies have been confined to conservative\\nsettings. Here, we explore Thouless pumping of dissipative temporal solitons in\\na nonconservative one-dimensional optical system with gain and spectral\\nfiltering, described by the paradigmatic complex Ginzburg-Landau equation. Two\\ndissipatively induced nonlinear topological phase transitions are identified.\\nFirst, when varying dissipative parameters across a threshold, the soliton\\ntransitions from being trapped in time to quantized drifting. This quantized\\ntemporal drift remains robust, even as the system evolves from a single-soliton\\nstate into multi-soliton state. Second, a dynamically emergent phase transition\\nis found: the soliton is arrested until a critical point of its evolution,\\nwhere a transition to topological drift occurs. Both phenomena uniquely arise\\nfrom the dynamical interplay of dissipation, nonlinearity and topology.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"319 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑与孤子之间的相互作用是非线性拓扑物理学的一个核心课题。迄今为止,大多数研究都局限于保守孤子。在这里,我们探索了无汝抽运耗散时空孤子的非保守一维光学系统,该系统具有增益和光谱过滤功能,由典型的复杂金兹堡-朗道方程描述。首先,当耗散参数的变化跨越阈值时,孤子会从时间滞留转变为量子化漂移。即使系统从单溶胶子状态演变为多溶胶子状态,这种量子化的时间漂移仍然保持稳健。其次,我们发现了一种动态出现的相变:孤子在其演化的临界点之前一直处于停滞状态,并在此过渡到拓扑漂移。这两种现象都独特地产生于耗散、非线性和拓扑的动态相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative Nonlinear Thouless Pumping of Temporal Solitons
The interplay between topology and soliton is a central topic in nonlinear topological physics. So far, most studies have been confined to conservative settings. Here, we explore Thouless pumping of dissipative temporal solitons in a nonconservative one-dimensional optical system with gain and spectral filtering, described by the paradigmatic complex Ginzburg-Landau equation. Two dissipatively induced nonlinear topological phase transitions are identified. First, when varying dissipative parameters across a threshold, the soliton transitions from being trapped in time to quantized drifting. This quantized temporal drift remains robust, even as the system evolves from a single-soliton state into multi-soliton state. Second, a dynamically emergent phase transition is found: the soliton is arrested until a critical point of its evolution, where a transition to topological drift occurs. Both phenomena uniquely arise from the dynamical interplay of dissipation, nonlinearity and topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信