Jose G Munguia-Lopez, Sangeeth Pillai, Yuli Zhang, Amatzia Gantz, Dimitria B. Camasao, Showan N. Nazhat, Joseph M. Kinsella, Simon D. Tran
{"title":"用可逆热离子交联三维水凝胶扩增功能性人唾液腺尖腺细胞球体","authors":"Jose G Munguia-Lopez, Sangeeth Pillai, Yuli Zhang, Amatzia Gantz, Dimitria B. Camasao, Showan N. Nazhat, Joseph M. Kinsella, Simon D. Tran","doi":"10.1101/2024.09.09.612117","DOIUrl":null,"url":null,"abstract":"Xerostomia (dry mouth) is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren's syndrome, with no permanent cure existing for this debilitating condition. To this end, in vitro platforms are needed to test therapies directed at salivary (fluid-secreting) cells. However, since these are highly differentiated secretory cells, the maintenance of their differentiated state while expanding in numbers is challenging. In this study, the efficiency of three reversible thermo-ionically crosslinked gels: 1) alginate-gelatin (AG), 2) collagen-containing AG (AGC), and 3) hyaluronic acid-containing AG (AGHA), to recapitulate a native-like environment for human salivary gland (SG) cell expansion and 3D spheroid formation was compared. Although all gels were of mechanical properties comparable to human SG tissue (~11 kPa) and promoted the formation of 3D spheroids, AGHA gels produced larger (>100 cells/spheroid), viable (>93%), proliferative, and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins (aquaporin-5, NKCC1, ZO-1, α-amylase) for 14 days in culture. Moreover, the spheroids responded to agonist-induced stimulation by increasing α-amylase secretory granules. Here, we propose alternative low-cost, reproducible, and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact, highly viable 3D-SG spheroids for downstream applications.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion of functional human salivary acinar cell spheroids with reversible thermo-ionically crosslinked 3D hydrogels\",\"authors\":\"Jose G Munguia-Lopez, Sangeeth Pillai, Yuli Zhang, Amatzia Gantz, Dimitria B. Camasao, Showan N. Nazhat, Joseph M. Kinsella, Simon D. Tran\",\"doi\":\"10.1101/2024.09.09.612117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Xerostomia (dry mouth) is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren's syndrome, with no permanent cure existing for this debilitating condition. To this end, in vitro platforms are needed to test therapies directed at salivary (fluid-secreting) cells. However, since these are highly differentiated secretory cells, the maintenance of their differentiated state while expanding in numbers is challenging. In this study, the efficiency of three reversible thermo-ionically crosslinked gels: 1) alginate-gelatin (AG), 2) collagen-containing AG (AGC), and 3) hyaluronic acid-containing AG (AGHA), to recapitulate a native-like environment for human salivary gland (SG) cell expansion and 3D spheroid formation was compared. Although all gels were of mechanical properties comparable to human SG tissue (~11 kPa) and promoted the formation of 3D spheroids, AGHA gels produced larger (>100 cells/spheroid), viable (>93%), proliferative, and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins (aquaporin-5, NKCC1, ZO-1, α-amylase) for 14 days in culture. Moreover, the spheroids responded to agonist-induced stimulation by increasing α-amylase secretory granules. Here, we propose alternative low-cost, reproducible, and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact, highly viable 3D-SG spheroids for downstream applications.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.612117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.612117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expansion of functional human salivary acinar cell spheroids with reversible thermo-ionically crosslinked 3D hydrogels
Xerostomia (dry mouth) is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren's syndrome, with no permanent cure existing for this debilitating condition. To this end, in vitro platforms are needed to test therapies directed at salivary (fluid-secreting) cells. However, since these are highly differentiated secretory cells, the maintenance of their differentiated state while expanding in numbers is challenging. In this study, the efficiency of three reversible thermo-ionically crosslinked gels: 1) alginate-gelatin (AG), 2) collagen-containing AG (AGC), and 3) hyaluronic acid-containing AG (AGHA), to recapitulate a native-like environment for human salivary gland (SG) cell expansion and 3D spheroid formation was compared. Although all gels were of mechanical properties comparable to human SG tissue (~11 kPa) and promoted the formation of 3D spheroids, AGHA gels produced larger (>100 cells/spheroid), viable (>93%), proliferative, and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins (aquaporin-5, NKCC1, ZO-1, α-amylase) for 14 days in culture. Moreover, the spheroids responded to agonist-induced stimulation by increasing α-amylase secretory granules. Here, we propose alternative low-cost, reproducible, and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact, highly viable 3D-SG spheroids for downstream applications.