通过加权聚合进行空中联合学习

Seyed Mohammad Azimi-Abarghouyi, Leandros Tassiulas
{"title":"通过加权聚合进行空中联合学习","authors":"Seyed Mohammad Azimi-Abarghouyi, Leandros Tassiulas","doi":"arxiv-2409.07822","DOIUrl":null,"url":null,"abstract":"This paper introduces a new federated learning scheme that leverages\nover-the-air computation. A novel feature of this scheme is the proposal to\nemploy adaptive weights during aggregation, a facet treated as predefined in\nother over-the-air schemes. This can mitigate the impact of wireless channel\nconditions on learning performance, without needing channel state information\nat transmitter side (CSIT). We provide a mathematical methodology to derive the\nconvergence bound for the proposed scheme in the context of computational\nheterogeneity and general loss functions, supplemented with design insights.\nAccordingly, we propose aggregation cost metrics and efficient algorithms to\nfind optimized weights for the aggregation. Finally, through numerical\nexperiments, we validate the effectiveness of the proposed scheme. Even with\nthe challenges posed by channel conditions and device heterogeneity, the\nproposed scheme surpasses other over-the-air strategies by an accuracy\nimprovement of 15% over the scheme using CSIT and 30% compared to the one\nwithout CSIT.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Over-the-Air Federated Learning via Weighted Aggregation\",\"authors\":\"Seyed Mohammad Azimi-Abarghouyi, Leandros Tassiulas\",\"doi\":\"arxiv-2409.07822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new federated learning scheme that leverages\\nover-the-air computation. A novel feature of this scheme is the proposal to\\nemploy adaptive weights during aggregation, a facet treated as predefined in\\nother over-the-air schemes. This can mitigate the impact of wireless channel\\nconditions on learning performance, without needing channel state information\\nat transmitter side (CSIT). We provide a mathematical methodology to derive the\\nconvergence bound for the proposed scheme in the context of computational\\nheterogeneity and general loss functions, supplemented with design insights.\\nAccordingly, we propose aggregation cost metrics and efficient algorithms to\\nfind optimized weights for the aggregation. Finally, through numerical\\nexperiments, we validate the effectiveness of the proposed scheme. Even with\\nthe challenges posed by channel conditions and device heterogeneity, the\\nproposed scheme surpasses other over-the-air strategies by an accuracy\\nimprovement of 15% over the scheme using CSIT and 30% compared to the one\\nwithout CSIT.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用空中计算的新型联合学习方案。该方案的一个新特点是建议在聚合过程中采用自适应权重,这在其他空中方案中被视为预定义。这可以减轻无线信道条件对学习性能的影响,而不需要发射端信道状态信息(CSIT)。我们提供了一种数学方法,在计算异质性和一般损失函数的背景下推导出拟议方案的收敛边界,并辅以设计见解。最后,我们通过数值实验验证了所提方案的有效性。即使面临信道条件和设备异构性带来的挑战,所提出的方案仍然超越了其他空中策略,与使用 CSIT 的方案相比,精度提高了 15%,与不使用 CSIT 的方案相比,精度提高了 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Over-the-Air Federated Learning via Weighted Aggregation
This paper introduces a new federated learning scheme that leverages over-the-air computation. A novel feature of this scheme is the proposal to employ adaptive weights during aggregation, a facet treated as predefined in other over-the-air schemes. This can mitigate the impact of wireless channel conditions on learning performance, without needing channel state information at transmitter side (CSIT). We provide a mathematical methodology to derive the convergence bound for the proposed scheme in the context of computational heterogeneity and general loss functions, supplemented with design insights. Accordingly, we propose aggregation cost metrics and efficient algorithms to find optimized weights for the aggregation. Finally, through numerical experiments, we validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme surpasses other over-the-air strategies by an accuracy improvement of 15% over the scheme using CSIT and 30% compared to the one without CSIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信