设计阈值受限的间接量化器

Ariel Doubchak, Tal Philosof, Uri Erez, Amit Berman
{"title":"设计阈值受限的间接量化器","authors":"Ariel Doubchak, Tal Philosof, Uri Erez, Amit Berman","doi":"arxiv-2409.06839","DOIUrl":null,"url":null,"abstract":"We address the problem of indirect quantization of a source subject to a\nmean-squared error distortion constraint. A well-known result of Wolf and Ziv\nis that the problem can be reduced to a standard (direct) quantization problem\nvia a two-step approach: first apply the conditional expectation estimator,\nobtaining a ``new'' source, then solve for the optimal quantizer for the latter\nsource. When quantization is implemented in hardware, however, invariably\nconstraints on the allowable class of quantizers are imposed, typically\nlimiting the class to \\emph{time-invariant} scalar quantizers with contiguous\nquantization cells. In the present work, optimal indirect quantization subject\nto these constraints is considered. Necessary conditions an optimal quantizer\nwithin this class must satisfy are derived, in the form of generalized\nLloyd-Max conditions, and an iterative algorithm for the design of such\nquantizers is proposed. Furthermore, for the case of a scalar observation, we\nderive a non-iterative algorithm for finding the optimal indirect quantizer\nbased on dynamic programming.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Threshold-Constrained Indirect Quantizers\",\"authors\":\"Ariel Doubchak, Tal Philosof, Uri Erez, Amit Berman\",\"doi\":\"arxiv-2409.06839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of indirect quantization of a source subject to a\\nmean-squared error distortion constraint. A well-known result of Wolf and Ziv\\nis that the problem can be reduced to a standard (direct) quantization problem\\nvia a two-step approach: first apply the conditional expectation estimator,\\nobtaining a ``new'' source, then solve for the optimal quantizer for the latter\\nsource. When quantization is implemented in hardware, however, invariably\\nconstraints on the allowable class of quantizers are imposed, typically\\nlimiting the class to \\\\emph{time-invariant} scalar quantizers with contiguous\\nquantization cells. In the present work, optimal indirect quantization subject\\nto these constraints is considered. Necessary conditions an optimal quantizer\\nwithin this class must satisfy are derived, in the form of generalized\\nLloyd-Max conditions, and an iterative algorithm for the design of such\\nquantizers is proposed. Furthermore, for the case of a scalar observation, we\\nderive a non-iterative algorithm for finding the optimal indirect quantizer\\nbased on dynamic programming.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是,在均方误差失真约束下,对信号源进行间接量化。沃尔夫和齐维(Wolf and Zivis)的一个著名结果是,这个问题可以通过两步法简化为一个标准(直接)量化问题:首先应用条件期望估计器,得到一个 "新 "信号源,然后求解后一个信号源的最优量化器。然而,当量化在硬件中实现时,总是会对允许的量化器类别施加限制,通常限制为具有连续量化单元的(emph{time-invariant})标量量化器。在本研究中,我们考虑了在这些限制条件下的最优间接量化。以广义劳埃德-最大条件的形式,推导出了该类最优量化器必须满足的必要条件,并提出了设计此类量化器的迭代算法。此外,针对标量观测的情况,我们还提出了一种基于动态编程的非迭代算法,用于寻找最优间接量化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Threshold-Constrained Indirect Quantizers
We address the problem of indirect quantization of a source subject to a mean-squared error distortion constraint. A well-known result of Wolf and Ziv is that the problem can be reduced to a standard (direct) quantization problem via a two-step approach: first apply the conditional expectation estimator, obtaining a ``new'' source, then solve for the optimal quantizer for the latter source. When quantization is implemented in hardware, however, invariably constraints on the allowable class of quantizers are imposed, typically limiting the class to \emph{time-invariant} scalar quantizers with contiguous quantization cells. In the present work, optimal indirect quantization subject to these constraints is considered. Necessary conditions an optimal quantizer within this class must satisfy are derived, in the form of generalized Lloyd-Max conditions, and an iterative algorithm for the design of such quantizers is proposed. Furthermore, for the case of a scalar observation, we derive a non-iterative algorithm for finding the optimal indirect quantizer based on dynamic programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信