{"title":"利用磁流变液体对下肢假肢行走时具有能量回收功能的新型关节模型进行动态控制模拟","authors":"Ionel Cristian Vladu, Cristina Floriana Pană, Cristian Copilusi, Dorian Cojocaru, Liviu Florin Manta, Alexandru Marin Mariniuc","doi":"10.1007/s40430-024-05126-z","DOIUrl":null,"url":null,"abstract":"<p>Researchers can now utilize new materials to create innovative models for lower limb prostheses and explore novel ways to use them for efficient dynamic control. To achieve user-friendliness, one area of research focuses on recovering and reusing kinetic walking energy for dynamic control. This paper proposes a new design for a magnetorheological (MR) valve, along with a rotary actuator which offers a dynamic control for a lower limb prosthesis. The design will allow the storage of the energy during heel and mid-foot contact phases and to utilize it during toe support to lift the foot off the ground and establish a balance for the lower limb prosthesis. The energy is transferred through a magnetorheological hydraulic circuit and stored using a pneumatic system. The speed of energy transfer is regulated by magnetorheological valves. A series of MR valve designs were proposed and evaluated experimentally, which allowed the identification of the most suitable variant in the targeted application context. The design of the lower limb prosthesis was simulated using SolidWorks, and its dynamic behavior was analyzed in ANSYS.</p>","PeriodicalId":17252,"journal":{"name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic control simulation of a new joint model with energy recovery during walking, using magnetorheological fluids, for lower limb prosthesis\",\"authors\":\"Ionel Cristian Vladu, Cristina Floriana Pană, Cristian Copilusi, Dorian Cojocaru, Liviu Florin Manta, Alexandru Marin Mariniuc\",\"doi\":\"10.1007/s40430-024-05126-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Researchers can now utilize new materials to create innovative models for lower limb prostheses and explore novel ways to use them for efficient dynamic control. To achieve user-friendliness, one area of research focuses on recovering and reusing kinetic walking energy for dynamic control. This paper proposes a new design for a magnetorheological (MR) valve, along with a rotary actuator which offers a dynamic control for a lower limb prosthesis. The design will allow the storage of the energy during heel and mid-foot contact phases and to utilize it during toe support to lift the foot off the ground and establish a balance for the lower limb prosthesis. The energy is transferred through a magnetorheological hydraulic circuit and stored using a pneumatic system. The speed of energy transfer is regulated by magnetorheological valves. A series of MR valve designs were proposed and evaluated experimentally, which allowed the identification of the most suitable variant in the targeted application context. The design of the lower limb prosthesis was simulated using SolidWorks, and its dynamic behavior was analyzed in ANSYS.</p>\",\"PeriodicalId\":17252,\"journal\":{\"name\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40430-024-05126-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40430-024-05126-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic control simulation of a new joint model with energy recovery during walking, using magnetorheological fluids, for lower limb prosthesis
Researchers can now utilize new materials to create innovative models for lower limb prostheses and explore novel ways to use them for efficient dynamic control. To achieve user-friendliness, one area of research focuses on recovering and reusing kinetic walking energy for dynamic control. This paper proposes a new design for a magnetorheological (MR) valve, along with a rotary actuator which offers a dynamic control for a lower limb prosthesis. The design will allow the storage of the energy during heel and mid-foot contact phases and to utilize it during toe support to lift the foot off the ground and establish a balance for the lower limb prosthesis. The energy is transferred through a magnetorheological hydraulic circuit and stored using a pneumatic system. The speed of energy transfer is regulated by magnetorheological valves. A series of MR valve designs were proposed and evaluated experimentally, which allowed the identification of the most suitable variant in the targeted application context. The design of the lower limb prosthesis was simulated using SolidWorks, and its dynamic behavior was analyzed in ANSYS.
期刊介绍:
The Journal of the Brazilian Society of Mechanical Sciences and Engineering publishes manuscripts on research, development and design related to science and technology in Mechanical Engineering. It is an interdisciplinary journal with interfaces to other branches of Engineering, as well as with Physics and Applied Mathematics. The Journal accepts manuscripts in four different formats: Full Length Articles, Review Articles, Book Reviews and Letters to the Editor.
Interfaces with other branches of engineering, along with physics, applied mathematics and more
Presents manuscripts on research, development and design related to science and technology in mechanical engineering.