{"title":"用于太阳齿轮故障诊断的增强型振动分离技术","authors":"Changliang Liu, Shaokang Liu, Weiliang Liu, Shuai Liu, Yingjie Wu, Ziqi Wang, Zhihong Luo","doi":"10.1007/s40430-024-05155-8","DOIUrl":null,"url":null,"abstract":"<p>The complex structure of a planetary gearbox weakens the gear fault characteristics in measurement signals. Vibration separation (VS) technology can address this problem by eliminating the impact of time-varying transfer paths on the signal. However, existing methods for determining the first window position (FWP) of VS are not highly accurate. To address this issue, a novel method for determining the FWP has been proposed in this paper, thereby creating an enhanced VS (EVS) technology. First, the envelope signal, which contains the amplitude-modulated signal (AMS) due to time-varying transfer paths, is separated using a zero-phase bandpass filter and Hilbert transform. Then, adaptive chirp mode decomposition is employed to accurately estimate a harmonic of the AMS. A sequence is formed by identifying the maximum points of the harmonic signal, indicating the moments when the planetary gear passes beneath the accelerometer. Finally, the VS method is applied based on the selected FWP. The results from both simulation and experimental signal analyses indicate that the FWP error of the EVS method (1.57%) is lower than the errors (1.83, 20.06, and 12.04%) found in the comparison methods. Additionally, the fault characteristic amplitude in the envelope order spectrum using EVS (9.78 m/s<sup>2</sup>) is higher than the amplitudes (6.14 m/s<sup>2</sup>, 6.18 m/s<sup>2</sup>, 8.56 m/s<sup>2</sup>, and 0.95 m/s<sup>2</sup>) recorded by the comparison methods. These findings confirm the effectiveness and superiority of EVS over other methods in terms of FWP accuracy and fault characteristic enhancement.</p>","PeriodicalId":17252,"journal":{"name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","volume":"24 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced vibration separation technique for fault diagnosis of sun gear\",\"authors\":\"Changliang Liu, Shaokang Liu, Weiliang Liu, Shuai Liu, Yingjie Wu, Ziqi Wang, Zhihong Luo\",\"doi\":\"10.1007/s40430-024-05155-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex structure of a planetary gearbox weakens the gear fault characteristics in measurement signals. Vibration separation (VS) technology can address this problem by eliminating the impact of time-varying transfer paths on the signal. However, existing methods for determining the first window position (FWP) of VS are not highly accurate. To address this issue, a novel method for determining the FWP has been proposed in this paper, thereby creating an enhanced VS (EVS) technology. First, the envelope signal, which contains the amplitude-modulated signal (AMS) due to time-varying transfer paths, is separated using a zero-phase bandpass filter and Hilbert transform. Then, adaptive chirp mode decomposition is employed to accurately estimate a harmonic of the AMS. A sequence is formed by identifying the maximum points of the harmonic signal, indicating the moments when the planetary gear passes beneath the accelerometer. Finally, the VS method is applied based on the selected FWP. The results from both simulation and experimental signal analyses indicate that the FWP error of the EVS method (1.57%) is lower than the errors (1.83, 20.06, and 12.04%) found in the comparison methods. Additionally, the fault characteristic amplitude in the envelope order spectrum using EVS (9.78 m/s<sup>2</sup>) is higher than the amplitudes (6.14 m/s<sup>2</sup>, 6.18 m/s<sup>2</sup>, 8.56 m/s<sup>2</sup>, and 0.95 m/s<sup>2</sup>) recorded by the comparison methods. These findings confirm the effectiveness and superiority of EVS over other methods in terms of FWP accuracy and fault characteristic enhancement.</p>\",\"PeriodicalId\":17252,\"journal\":{\"name\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40430-024-05155-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40430-024-05155-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Enhanced vibration separation technique for fault diagnosis of sun gear
The complex structure of a planetary gearbox weakens the gear fault characteristics in measurement signals. Vibration separation (VS) technology can address this problem by eliminating the impact of time-varying transfer paths on the signal. However, existing methods for determining the first window position (FWP) of VS are not highly accurate. To address this issue, a novel method for determining the FWP has been proposed in this paper, thereby creating an enhanced VS (EVS) technology. First, the envelope signal, which contains the amplitude-modulated signal (AMS) due to time-varying transfer paths, is separated using a zero-phase bandpass filter and Hilbert transform. Then, adaptive chirp mode decomposition is employed to accurately estimate a harmonic of the AMS. A sequence is formed by identifying the maximum points of the harmonic signal, indicating the moments when the planetary gear passes beneath the accelerometer. Finally, the VS method is applied based on the selected FWP. The results from both simulation and experimental signal analyses indicate that the FWP error of the EVS method (1.57%) is lower than the errors (1.83, 20.06, and 12.04%) found in the comparison methods. Additionally, the fault characteristic amplitude in the envelope order spectrum using EVS (9.78 m/s2) is higher than the amplitudes (6.14 m/s2, 6.18 m/s2, 8.56 m/s2, and 0.95 m/s2) recorded by the comparison methods. These findings confirm the effectiveness and superiority of EVS over other methods in terms of FWP accuracy and fault characteristic enhancement.
期刊介绍:
The Journal of the Brazilian Society of Mechanical Sciences and Engineering publishes manuscripts on research, development and design related to science and technology in Mechanical Engineering. It is an interdisciplinary journal with interfaces to other branches of Engineering, as well as with Physics and Applied Mathematics. The Journal accepts manuscripts in four different formats: Full Length Articles, Review Articles, Book Reviews and Letters to the Editor.
Interfaces with other branches of engineering, along with physics, applied mathematics and more
Presents manuscripts on research, development and design related to science and technology in mechanical engineering.