{"title":"为三价和四价锕系元素(An = Pa-Lr )优化的规范守恒型 5f-in-core 伪势和高斯基集","authors":"Jian-Biao , Liu, Jun-Bo , Lu, Yang-Yang , Zhang, Jun, Li","doi":"10.26434/chemrxiv-2024-m59d9","DOIUrl":null,"url":null,"abstract":"Relativistic pseudopotentials and basis sets are the workhorse for modeling heavy elements of lanthanides and actinides. The norm-conserving Goedecker, Teter, and Hutter (GTH) pseudopotential is advantageous for modeling lanthanides and actinides compounds and condensed systems because of its transferability and accuracy. In this work, we develop a set of well-benchmarked GTH-type 5f-in-core pseudopotentials with scalar-relativistic effects, together with associated Gaussian basis sets for the most commonly encountered trivalent and tetravalent actinides (An(III), An(IV); An = Pa-Lr). The 5f-in-core GTH pseudopotentials are constructed by placing 5f-subconfiguration 5fn open shells of An(III) and 5fn-1 of An(IV) (n = 2-14) into the atomic core in the core-valence separation. The different performances of 5f-in-core GTH pseudopotentials for trivalent and tetravalent actinides are further analyzed from the chemical bonding features of actinides. The formalism of 5f-in-core GTH pseudopotentials circumvent the computational difficulty arising from 5fx open valence shell. The optimized 5f-in-core GTH PPs and Gaussian basis sets can be used to accelerate the costly first-principles modeling of structure-complicated actinide compounds and condensed-phase actinide systems.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm-conserving 5f-in-core Pseudopotentials and Gaussian Basis Sets Optimized for Tri- and Tetra-Valent Actinides (An = Pa-Lr)\",\"authors\":\"Jian-Biao , Liu, Jun-Bo , Lu, Yang-Yang , Zhang, Jun, Li\",\"doi\":\"10.26434/chemrxiv-2024-m59d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relativistic pseudopotentials and basis sets are the workhorse for modeling heavy elements of lanthanides and actinides. The norm-conserving Goedecker, Teter, and Hutter (GTH) pseudopotential is advantageous for modeling lanthanides and actinides compounds and condensed systems because of its transferability and accuracy. In this work, we develop a set of well-benchmarked GTH-type 5f-in-core pseudopotentials with scalar-relativistic effects, together with associated Gaussian basis sets for the most commonly encountered trivalent and tetravalent actinides (An(III), An(IV); An = Pa-Lr). The 5f-in-core GTH pseudopotentials are constructed by placing 5f-subconfiguration 5fn open shells of An(III) and 5fn-1 of An(IV) (n = 2-14) into the atomic core in the core-valence separation. The different performances of 5f-in-core GTH pseudopotentials for trivalent and tetravalent actinides are further analyzed from the chemical bonding features of actinides. The formalism of 5f-in-core GTH pseudopotentials circumvent the computational difficulty arising from 5fx open valence shell. The optimized 5f-in-core GTH PPs and Gaussian basis sets can be used to accelerate the costly first-principles modeling of structure-complicated actinide compounds and condensed-phase actinide systems.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-m59d9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-m59d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Norm-conserving 5f-in-core Pseudopotentials and Gaussian Basis Sets Optimized for Tri- and Tetra-Valent Actinides (An = Pa-Lr)
Relativistic pseudopotentials and basis sets are the workhorse for modeling heavy elements of lanthanides and actinides. The norm-conserving Goedecker, Teter, and Hutter (GTH) pseudopotential is advantageous for modeling lanthanides and actinides compounds and condensed systems because of its transferability and accuracy. In this work, we develop a set of well-benchmarked GTH-type 5f-in-core pseudopotentials with scalar-relativistic effects, together with associated Gaussian basis sets for the most commonly encountered trivalent and tetravalent actinides (An(III), An(IV); An = Pa-Lr). The 5f-in-core GTH pseudopotentials are constructed by placing 5f-subconfiguration 5fn open shells of An(III) and 5fn-1 of An(IV) (n = 2-14) into the atomic core in the core-valence separation. The different performances of 5f-in-core GTH pseudopotentials for trivalent and tetravalent actinides are further analyzed from the chemical bonding features of actinides. The formalism of 5f-in-core GTH pseudopotentials circumvent the computational difficulty arising from 5fx open valence shell. The optimized 5f-in-core GTH PPs and Gaussian basis sets can be used to accelerate the costly first-principles modeling of structure-complicated actinide compounds and condensed-phase actinide systems.