解码双金属铂-铁-纳米粒子中铁对低温反向水-气变换反应的促进作用

Colin, Hansen, Wei, Zhou, Enzo, Brack, Yuhao, Wang, Chunliang, Wang, James, Paterson, Jamie, Southouse, Christophe, Copéret
{"title":"解码双金属铂-铁-纳米粒子中铁对低温反向水-气变换反应的促进作用","authors":"Colin, Hansen, Wei, Zhou, Enzo, Brack, Yuhao, Wang, Chunliang, Wang, James, Paterson, Jamie, Southouse, Christophe, Copéret","doi":"10.26434/chemrxiv-2024-hzlgd-v2","DOIUrl":null,"url":null,"abstract":"The reverse water-gas shift reaction (RWGS) is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote the RWGS, especially when modified by promoter elements. However, their active state is still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) towards CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Promotional Effect of Iron in Bimetallic Pt-Fe-Nanoparticles for the Low Temperature Reverse Water-Gas Shift Reaction\",\"authors\":\"Colin, Hansen, Wei, Zhou, Enzo, Brack, Yuhao, Wang, Chunliang, Wang, James, Paterson, Jamie, Southouse, Christophe, Copéret\",\"doi\":\"10.26434/chemrxiv-2024-hzlgd-v2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reverse water-gas shift reaction (RWGS) is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote the RWGS, especially when modified by promoter elements. However, their active state is still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) towards CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-hzlgd-v2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-hzlgd-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水-气反向变换反应(RWGS)是化学工业的一项关键技术,也是新兴循环碳经济的核心。此前已有研究表明,铂基催化剂能有效促进 RWGS,尤其是在经过促进剂元素修饰的情况下。然而,人们对它们的活性状态仍然知之甚少。在这里,我们展示了在金属氧化物支撑的铂基纳米粒子中紧密加入铁促进剂可大幅提高其在低温反向水气变换(LT-RWGS)中的活性和选择性,并大大优于未添加促进剂的铂基材料。具体而言,本研究探讨了通过表面有机金属化学(SOMC)制备的二氧化硅(PtxFey@SiO2)支撑的铂铁双金属体系中铁的促进作用。活性最高的催化剂(Pt1Fe1@SiO2)对一氧化碳的选择性很高(>99% CO),其生成率为 0.192 molCO h-1 gcat-1,明显高于单金属 Pt@SiO2(96% sel.和 0.022 molCO h-1 gcat-1)。原位漫反射傅立叶变换红外光谱(DRIFTS)和 X 射线吸收光谱(XAS)表明,在反应条件下催化剂表面存在一个动态过程,揭示了单金属 Pt@SiO2 和双金属 PtxFey@SiO2 系统的不同反应途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding the Promotional Effect of Iron in Bimetallic Pt-Fe-Nanoparticles for the Low Temperature Reverse Water-Gas Shift Reaction
The reverse water-gas shift reaction (RWGS) is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote the RWGS, especially when modified by promoter elements. However, their active state is still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water-gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt-Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) towards CO at a formation rate of 0.192 molCO h-1 gcat-1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h-1 gcat-1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信