非线性系统的ℒ1$$ {\mathcal{L}}_1 $$输出反馈控制器的特征:通过输出控制不变域确定存在条件

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Hyung Tae Choi, Jung Hoon Kim, Tomomichi Hagiwara
{"title":"非线性系统的ℒ1$$ {\\mathcal{L}}_1 $$输出反馈控制器的特征:通过输出控制不变域确定存在条件","authors":"Hyung Tae Choi,&nbsp;Jung Hoon Kim,&nbsp;Tomomichi Hagiwara","doi":"10.1002/rnc.7589","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Motivated by existing works on the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> state-feedback controller for nonlinear systems, in which the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_{\\infty } $$</annotation>\n </semantics></math> norm of the output for the worst disturbance with a unit magnitude is required to be bounded by 1, this paper considers an extension of those works to an output-feedback form. More precisely, the existence of an <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> output-feedback controller for nonlinear systems is characterized by developing output regulation map and output controlled invariance domain, which are extended versions of the conventional regulation map and controlled invariance domain in the previous works. We first lead to a sufficient condition for the existence of an <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> output-feedback controller by ensuring the lower-semicontinuity of the corresponding output regulation map. It is also shown in this paper that there exists an <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> output-feedback controller only if there exists an output controlled invariance domain. Based on these conditions, we further introduce algorithmic guidelines for verifying the existence of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> output-feedback controller. Finally, a numerical example is provided to verify the validity of the overall arguments developed in this paper.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"34 17","pages":"11760-11785"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing \\n \\n \\n \\n \\n ℒ\\n \\n \\n 1\\n \\n \\n \\n $$ {\\\\mathcal{L}}_1 $$\\n output-feedback controller for nonlinear systems: Existence conditions via output controlled invariance domain\",\"authors\":\"Hyung Tae Choi,&nbsp;Jung Hoon Kim,&nbsp;Tomomichi Hagiwara\",\"doi\":\"10.1002/rnc.7589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Motivated by existing works on the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_1 $$</annotation>\\n </semantics></math> state-feedback controller for nonlinear systems, in which the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_{\\\\infty } $$</annotation>\\n </semantics></math> norm of the output for the worst disturbance with a unit magnitude is required to be bounded by 1, this paper considers an extension of those works to an output-feedback form. More precisely, the existence of an <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_1 $$</annotation>\\n </semantics></math> output-feedback controller for nonlinear systems is characterized by developing output regulation map and output controlled invariance domain, which are extended versions of the conventional regulation map and controlled invariance domain in the previous works. We first lead to a sufficient condition for the existence of an <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_1 $$</annotation>\\n </semantics></math> output-feedback controller by ensuring the lower-semicontinuity of the corresponding output regulation map. It is also shown in this paper that there exists an <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_1 $$</annotation>\\n </semantics></math> output-feedback controller only if there exists an output controlled invariance domain. Based on these conditions, we further introduce algorithmic guidelines for verifying the existence of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℒ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathcal{L}}_1 $$</annotation>\\n </semantics></math> output-feedback controller. Finally, a numerical example is provided to verify the validity of the overall arguments developed in this paper.</p>\\n </div>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"34 17\",\"pages\":\"11760-11785\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7589\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7589","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 受现有非线性系统状态反馈控制器著作的启发,本文考虑将这些著作扩展到输出反馈形式。在这些著作中,要求单位大小的最坏干扰的输出规范以 1 为界。更确切地说,非线性系统输出反馈控制器的存在性是通过开发输出调节图和输出受控不变性域来表征的,它们是前人工作中传统调节图和受控不变性域的扩展版本。我们首先通过确保相应输出调节图的下半连续性,得出了输出反馈控制器存在的充分条件。本文还证明,只有存在输出控制不变域,才存在输出反馈控制器。基于这些条件,我们进一步介绍了验证输出反馈控制器是否存在的算法指南。最后,我们提供了一个数值示例,以验证本文提出的整体论点的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing ℒ 1 $$ {\mathcal{L}}_1 $$ output-feedback controller for nonlinear systems: Existence conditions via output controlled invariance domain

Motivated by existing works on the 1 $$ {\mathcal{L}}_1 $$ state-feedback controller for nonlinear systems, in which the $$ {\mathcal{L}}_{\infty } $$ norm of the output for the worst disturbance with a unit magnitude is required to be bounded by 1, this paper considers an extension of those works to an output-feedback form. More precisely, the existence of an 1 $$ {\mathcal{L}}_1 $$ output-feedback controller for nonlinear systems is characterized by developing output regulation map and output controlled invariance domain, which are extended versions of the conventional regulation map and controlled invariance domain in the previous works. We first lead to a sufficient condition for the existence of an 1 $$ {\mathcal{L}}_1 $$ output-feedback controller by ensuring the lower-semicontinuity of the corresponding output regulation map. It is also shown in this paper that there exists an 1 $$ {\mathcal{L}}_1 $$ output-feedback controller only if there exists an output controlled invariance domain. Based on these conditions, we further introduce algorithmic guidelines for verifying the existence of 1 $$ {\mathcal{L}}_1 $$ output-feedback controller. Finally, a numerical example is provided to verify the validity of the overall arguments developed in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信