意大利流感类疾病的合作预测:Influcast 的经验

Stefania Fiandrino, Andrea Bizzotto, Giorgio Guzzetta, Stefano Merler, Federico Baldo, Eugenio Valdano, Alberto Mateo-Urdiales, Antonino Bella, Francesco Celino, Lorenzo Zino, Alessandro Rizzo, Yuhan Li, Nicola Perra, Corrado Gioannini, Paolo Milano, Daniela Paolotti, Marco Quaggiotto, Luca Rossi, Ivan Vismara, Alessandro Vespignani, Nicolo Gozzi
{"title":"意大利流感类疾病的合作预测:Influcast 的经验","authors":"Stefania Fiandrino, Andrea Bizzotto, Giorgio Guzzetta, Stefano Merler, Federico Baldo, Eugenio Valdano, Alberto Mateo-Urdiales, Antonino Bella, Francesco Celino, Lorenzo Zino, Alessandro Rizzo, Yuhan Li, Nicola Perra, Corrado Gioannini, Paolo Milano, Daniela Paolotti, Marco Quaggiotto, Luca Rossi, Ivan Vismara, Alessandro Vespignani, Nicolo Gozzi","doi":"10.1101/2024.09.09.24313361","DOIUrl":null,"url":null,"abstract":"Collaborative hubs that integrate multiple teams to generate ensemble projections and forecasts for shared targets are now regarded as state-of-the-art in epidemic predictive modeling. In this paper, we introduce Influcast, Italy's first epidemic forecasting hub for influenza-like illness. During the 2023/2024 winter season, Influcast provided 20 rounds of forecasts, involving five teams and eight models to predict influenza-like illness incidence up to four weeks in advance at the national and regional administrative level. The individual forecasts were synthesized into an ensemble and benchmarked against a baseline model. The ensemble forecasts consistently outperformed both individual models and baseline forecasts, demonstrating superior accuracy at national and sub-national levels across various metrics. Despite a decline in absolute performance over longer horizons, the ensemble model outperformed the baseline in all considered time frames. These findings underscore the importance of multimodel forecasting hubs in producing consistent short-term influenza-like illnesses forecasts that can inform public health preparedness and mitigation strategies.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative forecasting of influenza-like illness in Italy: the Influcast experience\",\"authors\":\"Stefania Fiandrino, Andrea Bizzotto, Giorgio Guzzetta, Stefano Merler, Federico Baldo, Eugenio Valdano, Alberto Mateo-Urdiales, Antonino Bella, Francesco Celino, Lorenzo Zino, Alessandro Rizzo, Yuhan Li, Nicola Perra, Corrado Gioannini, Paolo Milano, Daniela Paolotti, Marco Quaggiotto, Luca Rossi, Ivan Vismara, Alessandro Vespignani, Nicolo Gozzi\",\"doi\":\"10.1101/2024.09.09.24313361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative hubs that integrate multiple teams to generate ensemble projections and forecasts for shared targets are now regarded as state-of-the-art in epidemic predictive modeling. In this paper, we introduce Influcast, Italy's first epidemic forecasting hub for influenza-like illness. During the 2023/2024 winter season, Influcast provided 20 rounds of forecasts, involving five teams and eight models to predict influenza-like illness incidence up to four weeks in advance at the national and regional administrative level. The individual forecasts were synthesized into an ensemble and benchmarked against a baseline model. The ensemble forecasts consistently outperformed both individual models and baseline forecasts, demonstrating superior accuracy at national and sub-national levels across various metrics. Despite a decline in absolute performance over longer horizons, the ensemble model outperformed the baseline in all considered time frames. These findings underscore the importance of multimodel forecasting hubs in producing consistent short-term influenza-like illnesses forecasts that can inform public health preparedness and mitigation strategies.\",\"PeriodicalId\":501071,\"journal\":{\"name\":\"medRxiv - Epidemiology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.24313361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.24313361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整合多个团队为共享目标生成集合预测和预报的协作中心目前已被视为流行病预测建模的最先进技术。在本文中,我们将介绍意大利首个流感类疾病流行病预测中心 Influcast。在 2023/2024 年冬季,Influcast 提供了 20 轮预测,涉及五个团队和八个模型,在国家和地区行政层面提前四周预测流感样疾病的发病率。各个预测结果被合成为一个集合,并与一个基准模型进行比较。集合预测的结果始终优于单个模型和基线预测,在国家和国家以下各级的各种指标上都表现出更高的准确性。尽管在更长的时间跨度内,集合模型的绝对性能有所下降,但在所有考虑的时间范围内,集合模型的性能都优于基线模型。这些发现强调了多模型预报中心在制作一致的短期流感样疾病预报方面的重要性,这些预报可为公共卫生防备和缓解战略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative forecasting of influenza-like illness in Italy: the Influcast experience
Collaborative hubs that integrate multiple teams to generate ensemble projections and forecasts for shared targets are now regarded as state-of-the-art in epidemic predictive modeling. In this paper, we introduce Influcast, Italy's first epidemic forecasting hub for influenza-like illness. During the 2023/2024 winter season, Influcast provided 20 rounds of forecasts, involving five teams and eight models to predict influenza-like illness incidence up to four weeks in advance at the national and regional administrative level. The individual forecasts were synthesized into an ensemble and benchmarked against a baseline model. The ensemble forecasts consistently outperformed both individual models and baseline forecasts, demonstrating superior accuracy at national and sub-national levels across various metrics. Despite a decline in absolute performance over longer horizons, the ensemble model outperformed the baseline in all considered time frames. These findings underscore the importance of multimodel forecasting hubs in producing consistent short-term influenza-like illnesses forecasts that can inform public health preparedness and mitigation strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信