逆向罗宾问题的贝叶斯方法

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Aksel K. Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite
{"title":"逆向罗宾问题的贝叶斯方法","authors":"Aksel K. Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite","doi":"10.1137/23m1620624","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 1050-1084, September 2024. <br/> Abstract.In this paper, we investigate the Bayesian approach to inverse Robin problems. These are problems for certain elliptic boundary value problems of determining a Robin coefficient on a hidden part of the boundary from Cauchy data on the observable part. Such a nonlinear inverse problem arises naturally in the initialization of large-scale ice sheet models that are crucial in climate and sea-level predictions. We motivate the Bayesian approach for a prototypical Robin inverse problem by showing that the posterior mean converges in probability to the data-generating ground truth as the number of observations increases. Related to the stability theory for inverse Robin problems, we establish a logarithmic convergence rate for Sobolev-regular Robin coefficients, whereas for analytic coefficients we can attain an algebraic rate. The use of rescaled analytic Gaussian priors in posterior consistency for nonlinear inverse problems is new and may be of separate interest in other inverse problems. Our numerical results illustrate the convergence property in two observation settings.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"61 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bayesian Approach to Inverse Robin Problems\",\"authors\":\"Aksel K. Rasmussen, Fanny Seizilles, Mark Girolami, Ieva Kazlauskaite\",\"doi\":\"10.1137/23m1620624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 1050-1084, September 2024. <br/> Abstract.In this paper, we investigate the Bayesian approach to inverse Robin problems. These are problems for certain elliptic boundary value problems of determining a Robin coefficient on a hidden part of the boundary from Cauchy data on the observable part. Such a nonlinear inverse problem arises naturally in the initialization of large-scale ice sheet models that are crucial in climate and sea-level predictions. We motivate the Bayesian approach for a prototypical Robin inverse problem by showing that the posterior mean converges in probability to the data-generating ground truth as the number of observations increases. Related to the stability theory for inverse Robin problems, we establish a logarithmic convergence rate for Sobolev-regular Robin coefficients, whereas for analytic coefficients we can attain an algebraic rate. The use of rescaled analytic Gaussian priors in posterior consistency for nonlinear inverse problems is new and may be of separate interest in other inverse problems. Our numerical results illustrate the convergence property in two observation settings.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1620624\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1620624","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA《不确定性量化期刊》,第12卷,第3期,第1050-1084页,2024年9月。 摘要.本文研究了逆罗宾问题的贝叶斯方法。这些问题是某些椭圆边界值问题,即根据可观测部分的考奇数据确定边界隐藏部分的罗宾系数。这种非线性逆问题自然出现在对气候和海平面预测至关重要的大尺度冰盖模型的初始化过程中。我们通过证明随着观测数据数量的增加,后验均值在概率上会收敛于数据生成的基本真相,从而激发了针对典型的罗宾反问题的贝叶斯方法。与罗宾逆问题的稳定性理论相关,我们确定了 Sobolev 规则罗宾系数的对数收敛率,而对于解析系数,我们可以达到代数收敛率。在非线性逆问题的后验一致性中使用重标度解析高斯前验是一种新方法,可能对其他逆问题也有意义。我们的数值结果说明了在两种观测环境下的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bayesian Approach to Inverse Robin Problems
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 1050-1084, September 2024.
Abstract.In this paper, we investigate the Bayesian approach to inverse Robin problems. These are problems for certain elliptic boundary value problems of determining a Robin coefficient on a hidden part of the boundary from Cauchy data on the observable part. Such a nonlinear inverse problem arises naturally in the initialization of large-scale ice sheet models that are crucial in climate and sea-level predictions. We motivate the Bayesian approach for a prototypical Robin inverse problem by showing that the posterior mean converges in probability to the data-generating ground truth as the number of observations increases. Related to the stability theory for inverse Robin problems, we establish a logarithmic convergence rate for Sobolev-regular Robin coefficients, whereas for analytic coefficients we can attain an algebraic rate. The use of rescaled analytic Gaussian priors in posterior consistency for nonlinear inverse problems is new and may be of separate interest in other inverse problems. Our numerical results illustrate the convergence property in two observation settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信