地质样本无监督光谱分类的多块化学计量学方法

Beatriz Galindo-Prieto, Ian S. Mudway, Johan Linderholm, Paul Geladi
{"title":"地质样本无监督光谱分类的多块化学计量学方法","authors":"Beatriz Galindo-Prieto, Ian S. Mudway, Johan Linderholm, Paul Geladi","doi":"arxiv-2409.04466","DOIUrl":null,"url":null,"abstract":"In this paper, the potential use of multi-block chemometric methods to\nprovide improved unsupervised classification of compositionally complex\nmaterials through the integration of multi-modal spectrometric data sets (one\nXRF, two NIR, and two FT-Raman) was tested. We concluded that multi-block HPLS\nmodels are effective at combining multi-modal spectrometric data to provide a\nmore comprehensive classification of compositionally complex samples, and VIP\ncan reduce HPLS model complexity, while increasing its data interpretability.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-block chemometric approaches to the unsupervised spectral classification of geological samples\",\"authors\":\"Beatriz Galindo-Prieto, Ian S. Mudway, Johan Linderholm, Paul Geladi\",\"doi\":\"arxiv-2409.04466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the potential use of multi-block chemometric methods to\\nprovide improved unsupervised classification of compositionally complex\\nmaterials through the integration of multi-modal spectrometric data sets (one\\nXRF, two NIR, and two FT-Raman) was tested. We concluded that multi-block HPLS\\nmodels are effective at combining multi-modal spectrometric data to provide a\\nmore comprehensive classification of compositionally complex samples, and VIP\\ncan reduce HPLS model complexity, while increasing its data interpretability.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文测试了多块化学计量学方法的潜在用途,即通过整合多模式光谱数据集(一个 XRF、两个近红外光谱和两个傅立叶变换拉曼光谱)对成分复杂的材料进行无监督分类。我们得出的结论是,多块 HPLS 模型能有效结合多模式光谱数据,为成分复杂的样品提供更全面的分类,并能降低 HPLS 模型的复杂性,同时提高其数据可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-block chemometric approaches to the unsupervised spectral classification of geological samples
In this paper, the potential use of multi-block chemometric methods to provide improved unsupervised classification of compositionally complex materials through the integration of multi-modal spectrometric data sets (one XRF, two NIR, and two FT-Raman) was tested. We concluded that multi-block HPLS models are effective at combining multi-modal spectrometric data to provide a more comprehensive classification of compositionally complex samples, and VIP can reduce HPLS model complexity, while increasing its data interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信