关于广义二项式边理想的正则猜想

IF 0.7 2区 数学 Q2 MATHEMATICS
J. Anuvinda, Ranjana Mehta, Kamalesh Saha
{"title":"关于广义二项式边理想的正则猜想","authors":"J. Anuvinda, Ranjana Mehta, Kamalesh Saha","doi":"10.1007/s13348-024-00452-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the upper bound conjecture proposed by Saeedi Madani and Kiani on the Castelnuovo–Mumford regularity of generalized binomial edge ideals. We give a combinatorial upper bound of regularity for generalized binomial edge ideals, which is better than the bound claimed in that conjecture. Also, we show that the bound is tight by providing an infinite class of graphs.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a regularity-conjecture of generalized binomial edge ideals\",\"authors\":\"J. Anuvinda, Ranjana Mehta, Kamalesh Saha\",\"doi\":\"10.1007/s13348-024-00452-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the upper bound conjecture proposed by Saeedi Madani and Kiani on the Castelnuovo–Mumford regularity of generalized binomial edge ideals. We give a combinatorial upper bound of regularity for generalized binomial edge ideals, which is better than the bound claimed in that conjecture. Also, we show that the bound is tight by providing an infinite class of graphs.</p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-024-00452-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00452-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了 Saeedi Madani 和 Kiani 就广义二叉边理想的卡斯特努沃-芒福德正则性提出的上界猜想。我们给出了广义二项式边理想正则性的组合上界,它优于该猜想中的上界。此外,我们还提供了一类无限图,从而证明该约束是严密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a regularity-conjecture of generalized binomial edge ideals

On a regularity-conjecture of generalized binomial edge ideals

In this paper, we prove the upper bound conjecture proposed by Saeedi Madani and Kiani on the Castelnuovo–Mumford regularity of generalized binomial edge ideals. We give a combinatorial upper bound of regularity for generalized binomial edge ideals, which is better than the bound claimed in that conjecture. Also, we show that the bound is tight by providing an infinite class of graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信