{"title":"全域维纳汞齐空间上的薛定谔传播者","authors":"GUOPING ZHAO, WEICHAO GUO","doi":"10.1017/nmj.2024.14","DOIUrl":null,"url":null,"abstract":"Using the technique of Gabor analysis, we characterize the boundedness of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302400014X_inline1.png\"/> <jats:tex-math> $e^{i\\Delta }: W^{p_1,q_1}_m\\rightarrow W^{p_2,q_2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with modulation and translation operators, where <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302400014X_inline2.png\"/> and <jats:italic>m</jats:italic> is a <jats:italic>v</jats:italic>-moderate weight. The sharp exponents for the boundedness are also characterized in the case of power weight.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCHRÖDINGER PROPAGATOR ON WIENER AMALGAM SPACES IN THE FULL RANGE\",\"authors\":\"GUOPING ZHAO, WEICHAO GUO\",\"doi\":\"10.1017/nmj.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the technique of Gabor analysis, we characterize the boundedness of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002776302400014X_inline1.png\\\"/> <jats:tex-math> $e^{i\\\\Delta }: W^{p_1,q_1}_m\\\\rightarrow W^{p_2,q_2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with modulation and translation operators, where <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002776302400014X_inline2.png\\\"/> and <jats:italic>m</jats:italic> is a <jats:italic>v</jats:italic>-moderate weight. The sharp exponents for the boundedness are also characterized in the case of power weight.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2024.14\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.14","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
SCHRÖDINGER PROPAGATOR ON WIENER AMALGAM SPACES IN THE FULL RANGE
Using the technique of Gabor analysis, we characterize the boundedness of $e^{i\Delta }: W^{p_1,q_1}_m\rightarrow W^{p_2,q_2}$ with modulation and translation operators, where and m is a v-moderate weight. The sharp exponents for the boundedness are also characterized in the case of power weight.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.