{"title":"变指数赫兹-莫雷空间中一类奇异积分算子的加权边界","authors":"Yanqi Yang, Qi Wu","doi":"arxiv-2409.07152","DOIUrl":null,"url":null,"abstract":"Let T be the singular integral operator with variable kernel defined by\n$Tf(x)= p.v. \\int_{\\mathbb{R}^{n}}K(x,x-y)f(y)\\mathrm{d}y$ and\n$D^{\\gamma}(0\\leq\\gamma\\leq1)$ be the fractional differentiation operator,\nwhere $K(x,z)=\\frac{\\Omega(x,z')}{|z|^{n}}$, $z'=\\frac{z}{|z|},~~z\\neq0$. Let\n$~T^{\\ast}~$and $~T^\\sharp~$ be the adjoint of $T$ and the pseudo-adjoint of\n$T$, respectively. In this paper, via the expansion of spherical harmonics and\nthe estimates of the convolution operators $T_{m,j}$, we shall prove some\nboundedness results for $TD^{\\gamma}-D^{\\gamma}T$ and\n$(T^{\\ast}-T^{\\sharp})D^{\\gamma}$ under natural regularity assumptions on the\nexponent function on a class of generalized Herz-Morrey spaces with weight and\nvariable exponent, which extend some known results. Moreover, various norm\ncharacterizations for the product $T_{1}T_{2}$ and the pseudo-product\n$T_{1}\\circ T_{2}$ are also established.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted bounds for a class of singular integral operators in variable exponent Herz-Morrey spaces\",\"authors\":\"Yanqi Yang, Qi Wu\",\"doi\":\"arxiv-2409.07152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let T be the singular integral operator with variable kernel defined by\\n$Tf(x)= p.v. \\\\int_{\\\\mathbb{R}^{n}}K(x,x-y)f(y)\\\\mathrm{d}y$ and\\n$D^{\\\\gamma}(0\\\\leq\\\\gamma\\\\leq1)$ be the fractional differentiation operator,\\nwhere $K(x,z)=\\\\frac{\\\\Omega(x,z')}{|z|^{n}}$, $z'=\\\\frac{z}{|z|},~~z\\\\neq0$. Let\\n$~T^{\\\\ast}~$and $~T^\\\\sharp~$ be the adjoint of $T$ and the pseudo-adjoint of\\n$T$, respectively. In this paper, via the expansion of spherical harmonics and\\nthe estimates of the convolution operators $T_{m,j}$, we shall prove some\\nboundedness results for $TD^{\\\\gamma}-D^{\\\\gamma}T$ and\\n$(T^{\\\\ast}-T^{\\\\sharp})D^{\\\\gamma}$ under natural regularity assumptions on the\\nexponent function on a class of generalized Herz-Morrey spaces with weight and\\nvariable exponent, which extend some known results. Moreover, various norm\\ncharacterizations for the product $T_{1}T_{2}$ and the pseudo-product\\n$T_{1}\\\\circ T_{2}$ are also established.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted bounds for a class of singular integral operators in variable exponent Herz-Morrey spaces
Let T be the singular integral operator with variable kernel defined by
$Tf(x)= p.v. \int_{\mathbb{R}^{n}}K(x,x-y)f(y)\mathrm{d}y$ and
$D^{\gamma}(0\leq\gamma\leq1)$ be the fractional differentiation operator,
where $K(x,z)=\frac{\Omega(x,z')}{|z|^{n}}$, $z'=\frac{z}{|z|},~~z\neq0$. Let
$~T^{\ast}~$and $~T^\sharp~$ be the adjoint of $T$ and the pseudo-adjoint of
$T$, respectively. In this paper, via the expansion of spherical harmonics and
the estimates of the convolution operators $T_{m,j}$, we shall prove some
boundedness results for $TD^{\gamma}-D^{\gamma}T$ and
$(T^{\ast}-T^{\sharp})D^{\gamma}$ under natural regularity assumptions on the
exponent function on a class of generalized Herz-Morrey spaces with weight and
variable exponent, which extend some known results. Moreover, various norm
characterizations for the product $T_{1}T_{2}$ and the pseudo-product
$T_{1}\circ T_{2}$ are also established.