{"title":"组合单子图解法","authors":"Sebastian Halbig, Tony Zorman","doi":"10.1007/s10485-024-09778-9","DOIUrl":null,"url":null,"abstract":"<div><p>We extend Willerton’s [24] graphical calculus for bimonads to comodule monads, a monadic interpretation of module categories over a monoidal category. As an application, we prove a version of Tannaka–Krein duality for these structures.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09778-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Diagrammatics for Comodule Monads\",\"authors\":\"Sebastian Halbig, Tony Zorman\",\"doi\":\"10.1007/s10485-024-09778-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend Willerton’s [24] graphical calculus for bimonads to comodule monads, a monadic interpretation of module categories over a monoidal category. As an application, we prove a version of Tannaka–Krein duality for these structures.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-024-09778-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09778-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09778-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We extend Willerton’s [24] graphical calculus for bimonads to comodule monads, a monadic interpretation of module categories over a monoidal category. As an application, we prove a version of Tannaka–Krein duality for these structures.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.