广义复斯坦因流形

Debjit Pal
{"title":"广义复斯坦因流形","authors":"Debjit Pal","doi":"arxiv-2409.01912","DOIUrl":null,"url":null,"abstract":"We introduce the notion of a generalized complex (GC) Stein manifold and\nprovide complete characterizations in three fundamental aspects. First, we\nextend Cartan's Theorem A and B within the framework of GC geometry. Next, we\ndefine $L$-plurisubharmonic functions and develop an associated $L^2$ theory.\nThis leads to a characterization of GC Stein manifolds using\n$L$-plurisubharmonic exhaustion functions. Finally, we establish the existence\nof a proper GH embedding from any GC Stein manifold into $\\mathbb{R}^{2n-2k}\n\\times \\mathbb{C}^{2k+1}$, where $2n$ and $k$ denote the dimension and type of\nthe GC Stein manifold, respectively. This provides a characterization of GC\nStein manifolds via GH embeddings. Several examples of GC Stein manifolds are\ngiven.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized complex Stein manifold\",\"authors\":\"Debjit Pal\",\"doi\":\"arxiv-2409.01912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of a generalized complex (GC) Stein manifold and\\nprovide complete characterizations in three fundamental aspects. First, we\\nextend Cartan's Theorem A and B within the framework of GC geometry. Next, we\\ndefine $L$-plurisubharmonic functions and develop an associated $L^2$ theory.\\nThis leads to a characterization of GC Stein manifolds using\\n$L$-plurisubharmonic exhaustion functions. Finally, we establish the existence\\nof a proper GH embedding from any GC Stein manifold into $\\\\mathbb{R}^{2n-2k}\\n\\\\times \\\\mathbb{C}^{2k+1}$, where $2n$ and $k$ denote the dimension and type of\\nthe GC Stein manifold, respectively. This provides a characterization of GC\\nStein manifolds via GH embeddings. Several examples of GC Stein manifolds are\\ngiven.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了广义复数(GC)斯坦流形的概念,并从三个基本方面提供了完整的描述。首先,我们在广义复几何框架内扩展了卡坦定理 A 和 B。接下来,我们定义了 $L$-plurisubharmonic 函数,并发展了相关的 $L^2$ 理论,从而利用 $L$-plurisubharmonic 穷竭函数描述了 GC 斯坦流形。最后,我们建立了从任何GC斯坦流形到$\mathbb{R}^{2n-2k}\times \mathbb{C}^{2k+1}$的适当GH嵌入,其中$2n$和$k$分别表示GC斯坦流形的维数和类型。这就通过 GH 嵌入给出了 GC 斯坦流形的特征。本文给出了几个 GC 斯坦流形的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized complex Stein manifold
We introduce the notion of a generalized complex (GC) Stein manifold and provide complete characterizations in three fundamental aspects. First, we extend Cartan's Theorem A and B within the framework of GC geometry. Next, we define $L$-plurisubharmonic functions and develop an associated $L^2$ theory. This leads to a characterization of GC Stein manifolds using $L$-plurisubharmonic exhaustion functions. Finally, we establish the existence of a proper GH embedding from any GC Stein manifold into $\mathbb{R}^{2n-2k} \times \mathbb{C}^{2k+1}$, where $2n$ and $k$ denote the dimension and type of the GC Stein manifold, respectively. This provides a characterization of GC Stein manifolds via GH embeddings. Several examples of GC Stein manifolds are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信