关于一个双次线性分数 $p$-Laplacian 方程

A. Iannizzotto, S. Mosconi
{"title":"关于一个双次线性分数 $p$-Laplacian 方程","authors":"A. Iannizzotto, S. Mosconi","doi":"arxiv-2409.03616","DOIUrl":null,"url":null,"abstract":"We prove a bifurcation result for a Dirichlet problem driven by the\nfractional $p$-Laplacian (either degenerate or singular), in which the reaction\nis the difference between two sublinear powers of the unknown. In our argument,\na fundamental role is played by a Sobolev vs.\\ H\\\"older minima principle,\nalready known for the degenerate case, which here we extend to the singular\ncase with a simpler proof.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a doubly sublinear fractional $p$-Laplacian equation\",\"authors\":\"A. Iannizzotto, S. Mosconi\",\"doi\":\"arxiv-2409.03616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a bifurcation result for a Dirichlet problem driven by the\\nfractional $p$-Laplacian (either degenerate or singular), in which the reaction\\nis the difference between two sublinear powers of the unknown. In our argument,\\na fundamental role is played by a Sobolev vs.\\\\ H\\\\\\\"older minima principle,\\nalready known for the degenerate case, which here we extend to the singular\\ncase with a simpler proof.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了由分数 $p$-Laplacian (退化或奇异)驱动的 Dirichlet 问题的分岔结果,其中反应是未知数的两个次线性幂之间的差。在我们的论证中,Sobolev vs. H\"older minima "原理发挥了根本性的作用,该原理在退化情况下已经为人所知,在此我们以更简单的证明将其扩展到奇异情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a doubly sublinear fractional $p$-Laplacian equation
We prove a bifurcation result for a Dirichlet problem driven by the fractional $p$-Laplacian (either degenerate or singular), in which the reaction is the difference between two sublinear powers of the unknown. In our argument, a fundamental role is played by a Sobolev vs.\ H\"older minima principle, already known for the degenerate case, which here we extend to the singular case with a simpler proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信