{"title":"线粒体 ATP 合成的减少模拟了低血糖对大鼠孤束下后核去极化神经元的影响","authors":"Patrik S. Zarpellon, Cahuê Murat, Ricardo M. Leão","doi":"10.1007/s10863-024-10037-8","DOIUrl":null,"url":null,"abstract":"<p>Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction in mitochondrial ATP synthesis mimics the effect of low glucose in depolarizing neurons from the subpostremal nucleus of the solitary tract of rats\",\"authors\":\"Patrik S. Zarpellon, Cahuê Murat, Ricardo M. Leão\",\"doi\":\"10.1007/s10863-024-10037-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-024-10037-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-024-10037-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
孤束后核下(NTS)神经元对细胞外葡萄糖变化的反应是膜电位的改变,包括去极化和超极化。在大多数神经元中,从 5 mM 葡萄糖快速转变到 0.5 mM 葡萄糖会产生未知机制的膜去极化。然而,这种反应所涉及的机制仍有待了解。在这里,我们研究了是否可以通过减少 ATP 合成来模拟低葡萄糖诱导的去极化以及这种效应的可能介质。我们发现,使用线粒体解耦剂 CCCP(1 µM)可再现低糖使膜去极化、产生内向电流和降低膜电阻的效应。另一方面,激活 AMPK 并不会改变这些参数。为了测试低糖和 CCCP 是否能通过影响离子梯度来使膜去极化,我们用 10 µM 的乌巴因抑制了电生 Na/K 泵。我们观察到了类似的膜去极化现象,但膜电阻并没有降低。我们的结论是,用低糖溶液灌注后下部 NTS 神经元可通过减少细胞内 ATP 使膜去极化,但不是通过激活 AMPK 或降低跨膜离子梯度。
Reduction in mitochondrial ATP synthesis mimics the effect of low glucose in depolarizing neurons from the subpostremal nucleus of the solitary tract of rats
Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.