实拓扑霍赫希尔德同调的计算工具

Chloe Lewis
{"title":"实拓扑霍赫希尔德同调的计算工具","authors":"Chloe Lewis","doi":"arxiv-2408.07188","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a Real equivariant version of the B\\\"okstedt\nspectral sequence which takes inputs in the theory of Real Hochschild homology\ndeveloped by Angelini-Knoll, Gerhardt, and Hill and converges to the\nequivariant homology of Real topological Hochschild homology, $\\text{THR}$. We\nalso show that when $A$ is a commutative $C_2$-ring spectrum, $\\text{THR}(A)$\nhas the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable\nhomotopy category.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational tools for Real topological Hochschild homology\",\"authors\":\"Chloe Lewis\",\"doi\":\"arxiv-2408.07188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a Real equivariant version of the B\\\\\\\"okstedt\\nspectral sequence which takes inputs in the theory of Real Hochschild homology\\ndeveloped by Angelini-Knoll, Gerhardt, and Hill and converges to the\\nequivariant homology of Real topological Hochschild homology, $\\\\text{THR}$. We\\nalso show that when $A$ is a commutative $C_2$-ring spectrum, $\\\\text{THR}(A)$\\nhas the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable\\nhomotopy category.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了一个B\"okstedtspectral序列的实等变版本,它以Angelini-Knoll、Gerhardt和Hill发展的实霍赫希尔德同调理论为输入,收敛于实拓霍赫希尔德同调的等变同调--$\text{THR}$。我们还证明,当 $A$ 是交换 $C_2$ 环谱时,$\text{THR}(A)$ 在 $C_2$ 变稳定同调范畴中具有 $A$-Hopf algebroid 的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational tools for Real topological Hochschild homology
In this paper, we construct a Real equivariant version of the B\"okstedt spectral sequence which takes inputs in the theory of Real Hochschild homology developed by Angelini-Knoll, Gerhardt, and Hill and converges to the equivariant homology of Real topological Hochschild homology, $\text{THR}$. We also show that when $A$ is a commutative $C_2$-ring spectrum, $\text{THR}(A)$ has the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable homotopy category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信