{"title":"实拓扑霍赫希尔德同调的计算工具","authors":"Chloe Lewis","doi":"arxiv-2408.07188","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a Real equivariant version of the B\\\"okstedt\nspectral sequence which takes inputs in the theory of Real Hochschild homology\ndeveloped by Angelini-Knoll, Gerhardt, and Hill and converges to the\nequivariant homology of Real topological Hochschild homology, $\\text{THR}$. We\nalso show that when $A$ is a commutative $C_2$-ring spectrum, $\\text{THR}(A)$\nhas the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable\nhomotopy category.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational tools for Real topological Hochschild homology\",\"authors\":\"Chloe Lewis\",\"doi\":\"arxiv-2408.07188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a Real equivariant version of the B\\\\\\\"okstedt\\nspectral sequence which takes inputs in the theory of Real Hochschild homology\\ndeveloped by Angelini-Knoll, Gerhardt, and Hill and converges to the\\nequivariant homology of Real topological Hochschild homology, $\\\\text{THR}$. We\\nalso show that when $A$ is a commutative $C_2$-ring spectrum, $\\\\text{THR}(A)$\\nhas the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable\\nhomotopy category.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational tools for Real topological Hochschild homology
In this paper, we construct a Real equivariant version of the B\"okstedt
spectral sequence which takes inputs in the theory of Real Hochschild homology
developed by Angelini-Knoll, Gerhardt, and Hill and converges to the
equivariant homology of Real topological Hochschild homology, $\text{THR}$. We
also show that when $A$ is a commutative $C_2$-ring spectrum, $\text{THR}(A)$
has the structure of an $A$-Hopf algebroid in the $C_2$-equivariant stable
homotopy category.