{"title":"广义瓦塞斯坦符号再探讨","authors":"Tariq Syed","doi":"arxiv-2408.10164","DOIUrl":null,"url":null,"abstract":"We give a construction of a generalized Vaserstein symbol associated to any\nfinitely generated projective module of rank $2$ over a commutative ring with\nunit.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generalized Vaserstein symbol revisited\",\"authors\":\"Tariq Syed\",\"doi\":\"arxiv-2408.10164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a construction of a generalized Vaserstein symbol associated to any\\nfinitely generated projective module of rank $2$ over a commutative ring with\\nunit.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give a construction of a generalized Vaserstein symbol associated to any
finitely generated projective module of rank $2$ over a commutative ring with
unit.