Abdul Rahman Shaik, Aishwary Vardhan Pandey, V. Karthik, Ashish Kolhatkar, G. Abhishek, R. Divakar
{"title":"将数字图像相关性应用于确定应力-应变特性的小型冲压试验","authors":"Abdul Rahman Shaik, Aishwary Vardhan Pandey, V. Karthik, Ashish Kolhatkar, G. Abhishek, R. Divakar","doi":"10.1007/s12666-024-03442-5","DOIUrl":null,"url":null,"abstract":"<p>The analysis of the small punch test is based on the force on the moving punch and the deflection data acquired at a single point of the specimen bottom. However, the spatial distribution of stress and strain at any given instant is non-uniform and its variations with increase in punch penetration are quite complex. In this work, the digital image correlation (DIC) technique is integrated with small punch test for in-situ full field strain measurement in the bottom surface of the specimen. The DIC results reveal that with the progression of deformation, the peak equivalent plastic strain at the bottom surface shifts from the center of the specimen to a characteristic radial location, where the strain rapidly builds up and concentrates leading to instability and cracking. Combining DIC-based strain results with finite element model-based stress estimation at the characteristic radial location, a methodology for determining the stress–strain curve from small punch test is formulated and the outcomes are compared with tensile test results for four different metallic alloys.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"21 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Digital Image Correlation to Small Punch Test for Determination of Stress–Strain Properties\",\"authors\":\"Abdul Rahman Shaik, Aishwary Vardhan Pandey, V. Karthik, Ashish Kolhatkar, G. Abhishek, R. Divakar\",\"doi\":\"10.1007/s12666-024-03442-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of the small punch test is based on the force on the moving punch and the deflection data acquired at a single point of the specimen bottom. However, the spatial distribution of stress and strain at any given instant is non-uniform and its variations with increase in punch penetration are quite complex. In this work, the digital image correlation (DIC) technique is integrated with small punch test for in-situ full field strain measurement in the bottom surface of the specimen. The DIC results reveal that with the progression of deformation, the peak equivalent plastic strain at the bottom surface shifts from the center of the specimen to a characteristic radial location, where the strain rapidly builds up and concentrates leading to instability and cracking. Combining DIC-based strain results with finite element model-based stress estimation at the characteristic radial location, a methodology for determining the stress–strain curve from small punch test is formulated and the outcomes are compared with tensile test results for four different metallic alloys.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03442-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03442-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Application of Digital Image Correlation to Small Punch Test for Determination of Stress–Strain Properties
The analysis of the small punch test is based on the force on the moving punch and the deflection data acquired at a single point of the specimen bottom. However, the spatial distribution of stress and strain at any given instant is non-uniform and its variations with increase in punch penetration are quite complex. In this work, the digital image correlation (DIC) technique is integrated with small punch test for in-situ full field strain measurement in the bottom surface of the specimen. The DIC results reveal that with the progression of deformation, the peak equivalent plastic strain at the bottom surface shifts from the center of the specimen to a characteristic radial location, where the strain rapidly builds up and concentrates leading to instability and cracking. Combining DIC-based strain results with finite element model-based stress estimation at the characteristic radial location, a methodology for determining the stress–strain curve from small punch test is formulated and the outcomes are compared with tensile test results for four different metallic alloys.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.