论演化 PDE 的邻接系统特性

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Brian K. Tran, Ben S. Southworth, Melvin Leok
{"title":"论演化 PDE 的邻接系统特性","authors":"Brian K. Tran, Ben S. Southworth, Melvin Leok","doi":"10.1007/s00332-024-10071-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate the geometric structure of adjoint systems associated with evolutionary partial differential equations at the fully continuous, semi-discrete, and fully discrete levels and the relations between these levels. We show that the adjoint system associated with an evolutionary partial differential equation has an infinite-dimensional Hamiltonian structure, which is useful for connecting the fully continuous, semi-discrete, and fully discrete levels. We subsequently address the question of discretize-then-optimize versus optimize-then-discrete for both semi-discretization and time integration, by characterizing the commutativity of discretize-then-optimize methods versus optimize-then-discretize methods uniquely in terms of an adjoint-variational quadratic conservation law. For Galerkin semi-discretizations and one-step time integration methods in particular, we explicitly construct these commuting methods by using structure-preserving discretization techniques.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Properties of Adjoint Systems for Evolutionary PDEs\",\"authors\":\"Brian K. Tran, Ben S. Southworth, Melvin Leok\",\"doi\":\"10.1007/s00332-024-10071-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the geometric structure of adjoint systems associated with evolutionary partial differential equations at the fully continuous, semi-discrete, and fully discrete levels and the relations between these levels. We show that the adjoint system associated with an evolutionary partial differential equation has an infinite-dimensional Hamiltonian structure, which is useful for connecting the fully continuous, semi-discrete, and fully discrete levels. We subsequently address the question of discretize-then-optimize versus optimize-then-discrete for both semi-discretization and time integration, by characterizing the commutativity of discretize-then-optimize methods versus optimize-then-discretize methods uniquely in terms of an adjoint-variational quadratic conservation law. For Galerkin semi-discretizations and one-step time integration methods in particular, we explicitly construct these commuting methods by using structure-preserving discretization techniques.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10071-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10071-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在完全连续、半离散和完全离散层面上与演化偏微分方程相关的邻接系统的几何结构,以及这些层面之间的关系。我们证明,与演化偏微分方程相关的邻接系统具有无穷维哈密顿结构,这有助于连接全连续、半离散和全离散层次。随后,我们通过对离散-优化方法与优化-离散方法的换向性的描述,以邻接变量二次守恒定律为唯一依据,解决了半离散化和时间积分的离散化-优化与优化-离散的问题。特别是对于 Galerkin 半离散化和一步时间积分法,我们通过使用结构保留离散化技术,明确构建了这些换向方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Properties of Adjoint Systems for Evolutionary PDEs

On Properties of Adjoint Systems for Evolutionary PDEs

We investigate the geometric structure of adjoint systems associated with evolutionary partial differential equations at the fully continuous, semi-discrete, and fully discrete levels and the relations between these levels. We show that the adjoint system associated with an evolutionary partial differential equation has an infinite-dimensional Hamiltonian structure, which is useful for connecting the fully continuous, semi-discrete, and fully discrete levels. We subsequently address the question of discretize-then-optimize versus optimize-then-discrete for both semi-discretization and time integration, by characterizing the commutativity of discretize-then-optimize methods versus optimize-then-discretize methods uniquely in terms of an adjoint-variational quadratic conservation law. For Galerkin semi-discretizations and one-step time integration methods in particular, we explicitly construct these commuting methods by using structure-preserving discretization techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信