Maarten Stroeks, Daan Lenterman, Barbara Terhal, Yaroslav Herasymenko
{"title":"在量子计算机上解决自由费米子问题","authors":"Maarten Stroeks, Daan Lenterman, Barbara Terhal, Yaroslav Herasymenko","doi":"arxiv-2409.04550","DOIUrl":null,"url":null,"abstract":"The simulation of time-dynamics and thermal states of free fermions on N =\n2^n modes are known to require poly(2^n) computational classical resources. We\npresent several such free fermion problems that can be solved by a quantum\nalgorithm with exponentially-improved, poly(n) cost. The key technique is the\nblock-encoding of the correlation matrix into a unitary. We demonstrate how\nsuch a unitary can be efficiently realized as a quantum circuit, in the context\nof dynamics and thermal states of tight-binding Hamiltonians. We prove that the\nproblem of free fermion time-dynamics is BQP-complete, thus ensuring a general\nexponential speedup of our approach.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Free Fermion Problems on a Quantum Computer\",\"authors\":\"Maarten Stroeks, Daan Lenterman, Barbara Terhal, Yaroslav Herasymenko\",\"doi\":\"arxiv-2409.04550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulation of time-dynamics and thermal states of free fermions on N =\\n2^n modes are known to require poly(2^n) computational classical resources. We\\npresent several such free fermion problems that can be solved by a quantum\\nalgorithm with exponentially-improved, poly(n) cost. The key technique is the\\nblock-encoding of the correlation matrix into a unitary. We demonstrate how\\nsuch a unitary can be efficiently realized as a quantum circuit, in the context\\nof dynamics and thermal states of tight-binding Hamiltonians. We prove that the\\nproblem of free fermion time-dynamics is BQP-complete, thus ensuring a general\\nexponential speedup of our approach.\",\"PeriodicalId\":501137,\"journal\":{\"name\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,模拟自由费米子在 N =2^n 模式上的时间动力学和热状态需要 poly(2^n) 计算经典资源。我们提出了几个这样的自由费米子问题,它们可以通过量子算法以指数级改进的poly(n)成本来解决。其中的关键技术是将相关矩阵阻塞编码成单元。我们演示了如何在紧密结合哈密顿的动力学和热态背景下,将这种单元有效地实现为量子电路。我们证明了自由费米子时间动力学问题是 BQP 完备的,从而确保了我们方法的泛指数加速。
Solving Free Fermion Problems on a Quantum Computer
The simulation of time-dynamics and thermal states of free fermions on N =
2^n modes are known to require poly(2^n) computational classical resources. We
present several such free fermion problems that can be solved by a quantum
algorithm with exponentially-improved, poly(n) cost. The key technique is the
block-encoding of the correlation matrix into a unitary. We demonstrate how
such a unitary can be efficiently realized as a quantum circuit, in the context
of dynamics and thermal states of tight-binding Hamiltonians. We prove that the
problem of free fermion time-dynamics is BQP-complete, thus ensuring a general
exponential speedup of our approach.