实现少体和多体系统的可扩展边界共振外推法

Nuwan Yapa, Sebastian König, Kévin Fossez
{"title":"实现少体和多体系统的可扩展边界共振外推法","authors":"Nuwan Yapa, Sebastian König, Kévin Fossez","doi":"arxiv-2409.03116","DOIUrl":null,"url":null,"abstract":"In open quantum many-body systems, the theoretical description of resonant\nstates of many particles strongly coupled to the continuum can be challenging.\nSuch states are commonplace in, for example, exotic nuclei and hadrons, and can\nreveal important information about the underlying forces at play in these\nsystems. In this work, we demonstrate that the complex-augmented eigenvector\ncontinuation (CA-EC) method, originally formulated for the two-body problem\nwith uniform complex scaling, can reliably perform bound-to-resonance\nextrapolations for genuine three-body resonances having no bound subsystems. We\nfirst establish that three-body bound-to-resonance extrapolations are possible\nby benchmarking different few-body approaches, and we provide arguments to\nexplain how the extrapolation works in the many-body case. We furthermore pave\nthe way towards scalable resonance extrapolations in many-body systems by\nshowing that the CA-EC method also works in the Berggren basis, studying a\nrealistic application using the Gamow shell model.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards scalable bound-to-resonance extrapolations for few- and many-body systems\",\"authors\":\"Nuwan Yapa, Sebastian König, Kévin Fossez\",\"doi\":\"arxiv-2409.03116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In open quantum many-body systems, the theoretical description of resonant\\nstates of many particles strongly coupled to the continuum can be challenging.\\nSuch states are commonplace in, for example, exotic nuclei and hadrons, and can\\nreveal important information about the underlying forces at play in these\\nsystems. In this work, we demonstrate that the complex-augmented eigenvector\\ncontinuation (CA-EC) method, originally formulated for the two-body problem\\nwith uniform complex scaling, can reliably perform bound-to-resonance\\nextrapolations for genuine three-body resonances having no bound subsystems. We\\nfirst establish that three-body bound-to-resonance extrapolations are possible\\nby benchmarking different few-body approaches, and we provide arguments to\\nexplain how the extrapolation works in the many-body case. We furthermore pave\\nthe way towards scalable resonance extrapolations in many-body systems by\\nshowing that the CA-EC method also works in the Berggren basis, studying a\\nrealistic application using the Gamow shell model.\",\"PeriodicalId\":501573,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Theory\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在开放量子多体系统中,对与连续体强耦合的许多粒子的共振态进行理论描述可能具有挑战性。这种状态在奇异原子核和强子等中很常见,可以揭示系统中潜在作用力的重要信息。在这项工作中,我们证明了复数增量特征向量延续(CA-EC)方法--该方法最初是为具有均匀复数缩放的二体问题而制定的--能够可靠地对没有约束子系统的真正三体共振进行约束到共振外推。我们首先以不同的少体方法为基准,确定三体边界到共振外推是可能的,并提供论据解释外推在多体情况下是如何工作的。此外,我们还证明了 CA-EC 方法在 Berggren 基础上也能工作,并研究了 Gamow 壳模型的实际应用,从而为在多体系统中实现可扩展的共振外推铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards scalable bound-to-resonance extrapolations for few- and many-body systems
In open quantum many-body systems, the theoretical description of resonant states of many particles strongly coupled to the continuum can be challenging. Such states are commonplace in, for example, exotic nuclei and hadrons, and can reveal important information about the underlying forces at play in these systems. In this work, we demonstrate that the complex-augmented eigenvector continuation (CA-EC) method, originally formulated for the two-body problem with uniform complex scaling, can reliably perform bound-to-resonance extrapolations for genuine three-body resonances having no bound subsystems. We first establish that three-body bound-to-resonance extrapolations are possible by benchmarking different few-body approaches, and we provide arguments to explain how the extrapolation works in the many-body case. We furthermore pave the way towards scalable resonance extrapolations in many-body systems by showing that the CA-EC method also works in the Berggren basis, studying a realistic application using the Gamow shell model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信