Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen
{"title":"过渡金属基界面调节层中的低氧化态工程可加速电荷转移动力学,从而提高光电化学水分离效果","authors":"Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen","doi":"10.1016/j.apcatb.2024.124503","DOIUrl":null,"url":null,"abstract":"The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low oxidation state engineering in transition metal-based interfacial regulation layer accelerates charge transfer kinetics toward enhanced photoelectrochemical water splitting\",\"authors\":\"Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen\",\"doi\":\"10.1016/j.apcatb.2024.124503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low oxidation state engineering in transition metal-based interfacial regulation layer accelerates charge transfer kinetics toward enhanced photoelectrochemical water splitting
The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.