剑麻玻璃增强聚合物复合材料在拉伸载荷和几何不规则情况下的力学行为

IF 2.3 4区 工程技术 Q2 ENGINEERING, MECHANICAL
D. Tamilvendan, A.R. Ravikumar, ArunKumar Munimathan, M. Ganesh
{"title":"剑麻玻璃增强聚合物复合材料在拉伸载荷和几何不规则情况下的力学行为","authors":"D. Tamilvendan, A.R. Ravikumar, ArunKumar Munimathan, M. Ganesh","doi":"10.1177/09544089241270770","DOIUrl":null,"url":null,"abstract":"The study aims to evaluate the tensile behavior of sisal glass-reinforced polymer composites with varying geometric irregularities. Composite laminates were fabricated using a hand layup technique, incorporating sisal fiber woven reinforcement and ortho-phthalic unsaturated polyester resin. The laminates, configured with 7 and 9 layers, were subjected to tensile testing with and without 6 mm and 12 mm diameter central holes and double holes spaced at 6.2 mm, 12 mm, and 48 mm intervals. The tensile tests were conducted using an electromechanical test system, and the results were analyzed to determine the ultimate tensile strength, modulus of elasticity, and failure strain for each specimen type. The findings revealed significant differences in tensile strength depending on the presence and size of the holes. Specimens with central holes exhibited a reduction in tensile strength, with the extent of strength reduction dependent on the hole diameter. Larger holes resulted in more severe stress concentrations, leading to greater strength degradation. Double-hole specimens showed similar strength reduction patterns, with closer spacing exacerbating the stress concentration effects. The residual strength ratio (RSR) for different configurations conformed to expected values for fiber-reinforced composites with circular hole-type defects. The study underscores the critical impact of geometric irregularities on the mechanical performance of sisal glass-reinforced polymer composites. These findings can guide the development of design strategies to mitigate the adverse effects of stress concentrators, thereby enhancing the reliability and durability of these materials in practical applications.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical behavior of sisal glass-reinforced polymer composites under tensile loading and geometric irregularities\",\"authors\":\"D. Tamilvendan, A.R. Ravikumar, ArunKumar Munimathan, M. Ganesh\",\"doi\":\"10.1177/09544089241270770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aims to evaluate the tensile behavior of sisal glass-reinforced polymer composites with varying geometric irregularities. Composite laminates were fabricated using a hand layup technique, incorporating sisal fiber woven reinforcement and ortho-phthalic unsaturated polyester resin. The laminates, configured with 7 and 9 layers, were subjected to tensile testing with and without 6 mm and 12 mm diameter central holes and double holes spaced at 6.2 mm, 12 mm, and 48 mm intervals. The tensile tests were conducted using an electromechanical test system, and the results were analyzed to determine the ultimate tensile strength, modulus of elasticity, and failure strain for each specimen type. The findings revealed significant differences in tensile strength depending on the presence and size of the holes. Specimens with central holes exhibited a reduction in tensile strength, with the extent of strength reduction dependent on the hole diameter. Larger holes resulted in more severe stress concentrations, leading to greater strength degradation. Double-hole specimens showed similar strength reduction patterns, with closer spacing exacerbating the stress concentration effects. The residual strength ratio (RSR) for different configurations conformed to expected values for fiber-reinforced composites with circular hole-type defects. The study underscores the critical impact of geometric irregularities on the mechanical performance of sisal glass-reinforced polymer composites. These findings can guide the development of design strategies to mitigate the adverse effects of stress concentrators, thereby enhancing the reliability and durability of these materials in practical applications.\",\"PeriodicalId\":20552,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241270770\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241270770","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估具有不同几何不规则性的剑麻玻璃纤维增强聚合物复合材料的拉伸行为。复合材料层压板采用手糊技术制造,其中包含剑麻纤维编织增强材料和邻苯二甲酸不饱和聚酯树脂。层压板分别有 7 层和 9 层,分别进行了拉伸试验,试验中分别使用了直径为 6 毫米和 12 毫米的中心孔,以及间隔为 6.2 毫米、12 毫米和 48 毫米的双孔。拉伸测试使用机电测试系统进行,并对结果进行分析,以确定每种试样的极限拉伸强度、弹性模量和破坏应变。研究结果表明,孔的存在和大小不同,抗拉强度也有明显差异。带有中心孔的试样会降低抗拉强度,强度降低的程度取决于孔的直径。较大的孔会导致更严重的应力集中,从而导致更大的强度下降。双孔试样显示出类似的强度降低模式,更近的间距加剧了应力集中效应。不同配置的残余强度比(RSR)符合具有圆孔型缺陷的纤维增强复合材料的预期值。这项研究强调了几何不规则性对剑麻玻璃增强聚合物复合材料机械性能的重要影响。这些发现可以指导设计策略的开发,减轻应力集中器的不利影响,从而提高这些材料在实际应用中的可靠性和耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical behavior of sisal glass-reinforced polymer composites under tensile loading and geometric irregularities
The study aims to evaluate the tensile behavior of sisal glass-reinforced polymer composites with varying geometric irregularities. Composite laminates were fabricated using a hand layup technique, incorporating sisal fiber woven reinforcement and ortho-phthalic unsaturated polyester resin. The laminates, configured with 7 and 9 layers, were subjected to tensile testing with and without 6 mm and 12 mm diameter central holes and double holes spaced at 6.2 mm, 12 mm, and 48 mm intervals. The tensile tests were conducted using an electromechanical test system, and the results were analyzed to determine the ultimate tensile strength, modulus of elasticity, and failure strain for each specimen type. The findings revealed significant differences in tensile strength depending on the presence and size of the holes. Specimens with central holes exhibited a reduction in tensile strength, with the extent of strength reduction dependent on the hole diameter. Larger holes resulted in more severe stress concentrations, leading to greater strength degradation. Double-hole specimens showed similar strength reduction patterns, with closer spacing exacerbating the stress concentration effects. The residual strength ratio (RSR) for different configurations conformed to expected values for fiber-reinforced composites with circular hole-type defects. The study underscores the critical impact of geometric irregularities on the mechanical performance of sisal glass-reinforced polymer composites. These findings can guide the development of design strategies to mitigate the adverse effects of stress concentrators, thereby enhancing the reliability and durability of these materials in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
16.70%
发文量
370
审稿时长
6 months
期刊介绍: The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信