关于投影有理同调积分 L 类的布拉塞莱特-舒尔曼-横仓猜想

Pub Date : 2024-09-10 DOI:10.1093/imrn/rnae193
Javier Fernández de Bobadilla, Irma Pallarés
{"title":"关于投影有理同调积分 L 类的布拉塞莱特-舒尔曼-横仓猜想","authors":"Javier Fernández de Bobadilla, Irma Pallarés","doi":"10.1093/imrn/rnae193","DOIUrl":null,"url":null,"abstract":"In 2010, Brasselet, Schürmann, and Yokura conjectured an equality of characteristic classes of singular varieties between the Goresky–MacPherson $L$-class $L_{*}(X)$ and the Hirzebruch homology class $T_{1,*}(X)$ for a compact complex algebraic variety $X$ that is a rational homology manifold. In this note we give a proof of this conjecture for projective varieties based on cubical hyperresolutions, the Decomposition Theorem, and Hodge theory. The crucial step of the proof is a new characterization of rational homology manifolds in terms of cubical hyperresolutions that we find of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brasselet–Schürmann–Yokura Conjecture on L-Classes of Projective Rational Homology Manifolds\",\"authors\":\"Javier Fernández de Bobadilla, Irma Pallarés\",\"doi\":\"10.1093/imrn/rnae193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2010, Brasselet, Schürmann, and Yokura conjectured an equality of characteristic classes of singular varieties between the Goresky–MacPherson $L$-class $L_{*}(X)$ and the Hirzebruch homology class $T_{1,*}(X)$ for a compact complex algebraic variety $X$ that is a rational homology manifold. In this note we give a proof of this conjecture for projective varieties based on cubical hyperresolutions, the Decomposition Theorem, and Hodge theory. The crucial step of the proof is a new characterization of rational homology manifolds in terms of cubical hyperresolutions that we find of independent interest.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2010 年,Brasselet、Schürmann 和 Yokura 猜想,对于是有理同调流形的紧凑复代数变元 $X$,奇异变元的戈尔斯基-麦克弗森 L$ 类 $L_{*}(X)$ 与希尔兹布鲁赫同调类 $T_{1,*}(X)$之间的特征类相等。在本论文中,我们基于立方超分解、分解定理和霍奇理论,给出了这一猜想的证明。证明的关键步骤是根据立方超解析对有理同调流形进行新的表征,我们发现这一点非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Brasselet–Schürmann–Yokura Conjecture on L-Classes of Projective Rational Homology Manifolds
In 2010, Brasselet, Schürmann, and Yokura conjectured an equality of characteristic classes of singular varieties between the Goresky–MacPherson $L$-class $L_{*}(X)$ and the Hirzebruch homology class $T_{1,*}(X)$ for a compact complex algebraic variety $X$ that is a rational homology manifold. In this note we give a proof of this conjecture for projective varieties based on cubical hyperresolutions, the Decomposition Theorem, and Hodge theory. The crucial step of the proof is a new characterization of rational homology manifolds in terms of cubical hyperresolutions that we find of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信