{"title":"通过计算均质化和机器学习揭示多晶微结构对陶瓷电解质离子电导率的影响","authors":"Xiang-Long Peng, Bai-Xiang Xu","doi":"10.1063/5.0223138","DOIUrl":null,"url":null,"abstract":"The ionic conductivity at the grain boundaries (GBs) in oxide ceramics is typically several orders of magnitude lower than that within the grain interior. This detrimental GB effect is the main bottleneck for designing high-performance ceramic electrolytes intended for use in solid-state lithium-ion batteries, fuel cells, and electrolyzer cells. The macroscopic ionic conductivity in oxide ceramics is essentially governed by the underlying polycrystalline microstructures where GBs and grain morphology go hand in hand. This provides the possibility to enhance the ion conductivity by microstructure engineering. To this end, a thorough understanding of microstructure–property correlation is highly desirable. In this work, we investigate numerous polycrystalline microstructure samples with varying grain and grain boundary features. Their macroscopic ionic conductivities are numerically evaluated by the finite element homogenization method, whereby the GB resistance is explicitly regarded. The influence of different microstructural features on the effective ionic conductivity is systematically studied. The microstructure–property relationships are revealed. Additionally, a graph neural network-based machine learning model is constructed and trained. It can accurately predict the effective ionic conductivity for a given polycrystalline microstructure. This work provides crucial quantitative guidelines for optimizing the ionic conducting performance of oxide ceramics by tailoring microstructures.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"61 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling impacts of polycrystalline microstructures on ionic conductivity of ceramic electrolytes by computational homogenization and machine learning\",\"authors\":\"Xiang-Long Peng, Bai-Xiang Xu\",\"doi\":\"10.1063/5.0223138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ionic conductivity at the grain boundaries (GBs) in oxide ceramics is typically several orders of magnitude lower than that within the grain interior. This detrimental GB effect is the main bottleneck for designing high-performance ceramic electrolytes intended for use in solid-state lithium-ion batteries, fuel cells, and electrolyzer cells. The macroscopic ionic conductivity in oxide ceramics is essentially governed by the underlying polycrystalline microstructures where GBs and grain morphology go hand in hand. This provides the possibility to enhance the ion conductivity by microstructure engineering. To this end, a thorough understanding of microstructure–property correlation is highly desirable. In this work, we investigate numerous polycrystalline microstructure samples with varying grain and grain boundary features. Their macroscopic ionic conductivities are numerically evaluated by the finite element homogenization method, whereby the GB resistance is explicitly regarded. The influence of different microstructural features on the effective ionic conductivity is systematically studied. The microstructure–property relationships are revealed. Additionally, a graph neural network-based machine learning model is constructed and trained. It can accurately predict the effective ionic conductivity for a given polycrystalline microstructure. This work provides crucial quantitative guidelines for optimizing the ionic conducting performance of oxide ceramics by tailoring microstructures.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223138\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223138","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Unraveling impacts of polycrystalline microstructures on ionic conductivity of ceramic electrolytes by computational homogenization and machine learning
The ionic conductivity at the grain boundaries (GBs) in oxide ceramics is typically several orders of magnitude lower than that within the grain interior. This detrimental GB effect is the main bottleneck for designing high-performance ceramic electrolytes intended for use in solid-state lithium-ion batteries, fuel cells, and electrolyzer cells. The macroscopic ionic conductivity in oxide ceramics is essentially governed by the underlying polycrystalline microstructures where GBs and grain morphology go hand in hand. This provides the possibility to enhance the ion conductivity by microstructure engineering. To this end, a thorough understanding of microstructure–property correlation is highly desirable. In this work, we investigate numerous polycrystalline microstructure samples with varying grain and grain boundary features. Their macroscopic ionic conductivities are numerically evaluated by the finite element homogenization method, whereby the GB resistance is explicitly regarded. The influence of different microstructural features on the effective ionic conductivity is systematically studied. The microstructure–property relationships are revealed. Additionally, a graph neural network-based machine learning model is constructed and trained. It can accurately predict the effective ionic conductivity for a given polycrystalline microstructure. This work provides crucial quantitative guidelines for optimizing the ionic conducting performance of oxide ceramics by tailoring microstructures.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces