基于交易图的区块链监管关键节点识别

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yiren Hu, Xiaozhen Lu, Wei Wang, Ping Cao
{"title":"基于交易图的区块链监管关键节点识别","authors":"Yiren Hu, Xiaozhen Lu, Wei Wang, Ping Cao","doi":"10.1007/s12083-024-01783-y","DOIUrl":null,"url":null,"abstract":"<p>The inherent distributed and anonymity features of the blockchain system may cause illegal activities like improper content dissemination, illegal transactions, money laundering, etc., posing a severe threat to the blockchain. Due to the ultra-large scale of the public chain system, identifying key nodes in the transaction network is usually cost-intensive and time-consuming. In this paper, we propose a transaction graph-based scheme to identify key nodes in the public blockchain, where a multi-stage key node detection algorithm is proposed. Real Ethereum transaction data validates the performance of the proposed scheme. It is shown that with a data volume of millions of items, our multi-stage approach can effectively eliminate low-value information from the data and realize high-efficiency key node detection, with similar performance compared to traditional algorithms without filtering, and an extremely large improvement in algorithm execution time.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"316 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transaction graph based key node identification for blockchain regulation\",\"authors\":\"Yiren Hu, Xiaozhen Lu, Wei Wang, Ping Cao\",\"doi\":\"10.1007/s12083-024-01783-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inherent distributed and anonymity features of the blockchain system may cause illegal activities like improper content dissemination, illegal transactions, money laundering, etc., posing a severe threat to the blockchain. Due to the ultra-large scale of the public chain system, identifying key nodes in the transaction network is usually cost-intensive and time-consuming. In this paper, we propose a transaction graph-based scheme to identify key nodes in the public blockchain, where a multi-stage key node detection algorithm is proposed. Real Ethereum transaction data validates the performance of the proposed scheme. It is shown that with a data volume of millions of items, our multi-stage approach can effectively eliminate low-value information from the data and realize high-efficiency key node detection, with similar performance compared to traditional algorithms without filtering, and an extremely large improvement in algorithm execution time.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"316 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01783-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01783-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

区块链系统与生俱来的分布式和匿名性特点,可能会导致不当内容传播、非法交易、洗钱等非法活动,对区块链构成严重威胁。由于公有链系统的超大规模,识别交易网络中的关键节点通常需要耗费大量的成本和时间。本文提出了一种基于交易图的公有区块链关键节点识别方案,其中提出了一种多阶段关键节点检测算法。真实的以太坊交易数据验证了所提方案的性能。结果表明,在数据量达数百万条的情况下,我们的多阶段方法可以有效剔除数据中的低价值信息,实现高效率的关键节点检测,其性能与不带过滤功能的传统算法相近,并且算法执行时间有了极大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transaction graph based key node identification for blockchain regulation

Transaction graph based key node identification for blockchain regulation

The inherent distributed and anonymity features of the blockchain system may cause illegal activities like improper content dissemination, illegal transactions, money laundering, etc., posing a severe threat to the blockchain. Due to the ultra-large scale of the public chain system, identifying key nodes in the transaction network is usually cost-intensive and time-consuming. In this paper, we propose a transaction graph-based scheme to identify key nodes in the public blockchain, where a multi-stage key node detection algorithm is proposed. Real Ethereum transaction data validates the performance of the proposed scheme. It is shown that with a data volume of millions of items, our multi-stage approach can effectively eliminate low-value information from the data and realize high-efficiency key node detection, with similar performance compared to traditional algorithms without filtering, and an extremely large improvement in algorithm execution time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peer-To-Peer Networking and Applications
Peer-To-Peer Networking and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
8.00
自引率
7.10%
发文量
145
审稿时长
12 months
期刊介绍: The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security. The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain. Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信