{"title":"多多维触觉渲染的精确离散时间稳定性分析:多速率、时延和机械参数的影响","authors":"Suhail Ganiny, Majid H Koul, Babar Ahmad","doi":"10.1177/09544062241271627","DOIUrl":null,"url":null,"abstract":"Previous studies on the stability analysis of haptic devices have predominantly focused on single-DOF devices, thereby limiting attention to multi-DOF devices, particularly those employing multi-rate sampling schemes. In this paper, we introduce a formulation for the coupled dynamics between the haptic device and the virtual environment for a multi-DOF haptic device controlled using a dual-rate sampling scheme. Subsequently, we analyze its stability through the application of a dynamic decoupling strategy within an exact discrete-time state-space framework while the device is engaged in rendering a virtual wall along one of its operational space coordinates. Furthermore, we explore how the combined influence of the dual-rate sampling approach, time delay, and the mechanical design affects the stability boundaries of the multi-DOF haptic device at a fixed workspace location as well as within the entire usable workspace. Additionally, we utilize a model-order reduction (MOR) framework to simplify the determination of the device’s stability limits, irrespective of the specific combinations of time delay and sampling rates employed.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact discrete-time stability analysis of multi-DOF haptic rendering: Impact of multi-rate, time-delay, and mechanical parameters\",\"authors\":\"Suhail Ganiny, Majid H Koul, Babar Ahmad\",\"doi\":\"10.1177/09544062241271627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies on the stability analysis of haptic devices have predominantly focused on single-DOF devices, thereby limiting attention to multi-DOF devices, particularly those employing multi-rate sampling schemes. In this paper, we introduce a formulation for the coupled dynamics between the haptic device and the virtual environment for a multi-DOF haptic device controlled using a dual-rate sampling scheme. Subsequently, we analyze its stability through the application of a dynamic decoupling strategy within an exact discrete-time state-space framework while the device is engaged in rendering a virtual wall along one of its operational space coordinates. Furthermore, we explore how the combined influence of the dual-rate sampling approach, time delay, and the mechanical design affects the stability boundaries of the multi-DOF haptic device at a fixed workspace location as well as within the entire usable workspace. Additionally, we utilize a model-order reduction (MOR) framework to simplify the determination of the device’s stability limits, irrespective of the specific combinations of time delay and sampling rates employed.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241271627\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241271627","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Exact discrete-time stability analysis of multi-DOF haptic rendering: Impact of multi-rate, time-delay, and mechanical parameters
Previous studies on the stability analysis of haptic devices have predominantly focused on single-DOF devices, thereby limiting attention to multi-DOF devices, particularly those employing multi-rate sampling schemes. In this paper, we introduce a formulation for the coupled dynamics between the haptic device and the virtual environment for a multi-DOF haptic device controlled using a dual-rate sampling scheme. Subsequently, we analyze its stability through the application of a dynamic decoupling strategy within an exact discrete-time state-space framework while the device is engaged in rendering a virtual wall along one of its operational space coordinates. Furthermore, we explore how the combined influence of the dual-rate sampling approach, time delay, and the mechanical design affects the stability boundaries of the multi-DOF haptic device at a fixed workspace location as well as within the entire usable workspace. Additionally, we utilize a model-order reduction (MOR) framework to simplify the determination of the device’s stability limits, irrespective of the specific combinations of time delay and sampling rates employed.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.