临界可忽略集合的瞬时哈密顿可置换性和任意交映可挤压性

Yann Guggisberg, Fabian Ziltener
{"title":"临界可忽略集合的瞬时哈密顿可置换性和任意交映可挤压性","authors":"Yann Guggisberg, Fabian Ziltener","doi":"arxiv-2408.17444","DOIUrl":null,"url":null,"abstract":"We call a metric space $s$-negligible iff its $s$-dimensional Hausdorff\nmeasure vanishes. We show that every countably $m$-rectifiable subset of\n$\\mathbb{R}^{2n}$ can be displaced from every $(2n-m)$-negligible subset by a\nHamiltonian diffeomorphism that is arbitrarily $C^\\infty$-close to the\nidentity. As a consequence, every countably $n$-rectifiable and $n$-negligible\nsubset of $\\mathbb{R}^{2n}$ is arbitrarily symplectically squeezable. Both\nresults are sharp w.r.t. the parameter $s$ in the $s$-negligibility assumption. The proof of our squeezing result uses folding. Potentially, our folding\nmethod can be modified to show that the Gromov width of $B^{2n}_1\\setminus A$\nequals $\\pi$ for every countably $(n-1)$-rectifiable closed subset $A$ of the\nopen unit ball $B^{2n}_1$. This means that $A$ is not a barrier.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instantaneous Hamiltonian displaceability and arbitrary symplectic squeezability for critically negligible sets\",\"authors\":\"Yann Guggisberg, Fabian Ziltener\",\"doi\":\"arxiv-2408.17444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We call a metric space $s$-negligible iff its $s$-dimensional Hausdorff\\nmeasure vanishes. We show that every countably $m$-rectifiable subset of\\n$\\\\mathbb{R}^{2n}$ can be displaced from every $(2n-m)$-negligible subset by a\\nHamiltonian diffeomorphism that is arbitrarily $C^\\\\infty$-close to the\\nidentity. As a consequence, every countably $n$-rectifiable and $n$-negligible\\nsubset of $\\\\mathbb{R}^{2n}$ is arbitrarily symplectically squeezable. Both\\nresults are sharp w.r.t. the parameter $s$ in the $s$-negligibility assumption. The proof of our squeezing result uses folding. Potentially, our folding\\nmethod can be modified to show that the Gromov width of $B^{2n}_1\\\\setminus A$\\nequals $\\\\pi$ for every countably $(n-1)$-rectifiable closed subset $A$ of the\\nopen unit ball $B^{2n}_1$. This means that $A$ is not a barrier.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个度量空间的 $s$ 维 Hausdorffmeasure 消失,我们就称它为 $s$ 不可忽略空间。我们证明,$mathbb{R}^{2n}$的每一个可数$m$可校正子集都可以通过一个哈密顿衍射从每一个$(2n-m)$可忽略子集移出,而这个哈密顿衍射是任意地$C^\infty$接近于同一性的。因此,$\mathbb{R}^{2n}$的每一个可数$n$可校正且$n$不可忽略的子集都是任意可共挤的。这两个结果在$s$不可忽略假设中的参数$s$时都是尖锐的。我们的挤压结果的证明使用了折叠法。有可能,我们的折叠方法可以被修改以证明,对于开放单位球 $B^{2n}_1$ 的每一个可数 $(n-1)$ 直的封闭子集 $A$,$B^{2n}_1setminus A$ 的格罗莫夫宽度等于 $\pi$。这意味着 $A$ 不是一个障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instantaneous Hamiltonian displaceability and arbitrary symplectic squeezability for critically negligible sets
We call a metric space $s$-negligible iff its $s$-dimensional Hausdorff measure vanishes. We show that every countably $m$-rectifiable subset of $\mathbb{R}^{2n}$ can be displaced from every $(2n-m)$-negligible subset by a Hamiltonian diffeomorphism that is arbitrarily $C^\infty$-close to the identity. As a consequence, every countably $n$-rectifiable and $n$-negligible subset of $\mathbb{R}^{2n}$ is arbitrarily symplectically squeezable. Both results are sharp w.r.t. the parameter $s$ in the $s$-negligibility assumption. The proof of our squeezing result uses folding. Potentially, our folding method can be modified to show that the Gromov width of $B^{2n}_1\setminus A$ equals $\pi$ for every countably $(n-1)$-rectifiable closed subset $A$ of the open unit ball $B^{2n}_1$. This means that $A$ is not a barrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信