{"title":"边界上的方向性切比雪夫常数","authors":"Thomas Bloom, Norman Levenberg","doi":"arxiv-2408.07619","DOIUrl":null,"url":null,"abstract":"We prove results on existence of limits in the definition of (weighted)\ndirectional Chebyshev constants at all points of the standard simplex $\\Sigma\n\\subset {\\bf R}^d$ for (locally) regular compact sets $K\\subset {\\bf C}^d$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional Chebyshev Constants on the Boundary\",\"authors\":\"Thomas Bloom, Norman Levenberg\",\"doi\":\"arxiv-2408.07619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove results on existence of limits in the definition of (weighted)\\ndirectional Chebyshev constants at all points of the standard simplex $\\\\Sigma\\n\\\\subset {\\\\bf R}^d$ for (locally) regular compact sets $K\\\\subset {\\\\bf C}^d$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove results on existence of limits in the definition of (weighted)
directional Chebyshev constants at all points of the standard simplex $\Sigma
\subset {\bf R}^d$ for (locally) regular compact sets $K\subset {\bf C}^d$.