{"title":"从谐波映射的施瓦兹导数看贝索夫和 $Q_p$ 空间的性质","authors":"Hugo Arbeláez, Rodrigo Hernández, Willy Sierra","doi":"arxiv-2408.09062","DOIUrl":null,"url":null,"abstract":"In this paper we give a characterization of $\\log J_f$ belongs to\n$\\widetilde{\\mathcal{B}}_p$ or $\\widetilde{\\mathcal{Q}}_p$ spaces for any\nlocally univalent sense-preserving harmonic mappings $f$ defined in the unit\ndisk, using the Schwarzian derivative of $f$ and Carleson meseaure. In\naddition, we introduce the classes $\\mathcal{BT}_p$ and $\\mathcal{QT}_p$, based\non the Jacobian operator, and begin a study of these.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Besov and $Q_p$ spaces in terms of the Schwarzian derivative of harmonic mappings\",\"authors\":\"Hugo Arbeláez, Rodrigo Hernández, Willy Sierra\",\"doi\":\"arxiv-2408.09062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a characterization of $\\\\log J_f$ belongs to\\n$\\\\widetilde{\\\\mathcal{B}}_p$ or $\\\\widetilde{\\\\mathcal{Q}}_p$ spaces for any\\nlocally univalent sense-preserving harmonic mappings $f$ defined in the unit\\ndisk, using the Schwarzian derivative of $f$ and Carleson meseaure. In\\naddition, we introduce the classes $\\\\mathcal{BT}_p$ and $\\\\mathcal{QT}_p$, based\\non the Jacobian operator, and begin a study of these.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of Besov and $Q_p$ spaces in terms of the Schwarzian derivative of harmonic mappings
In this paper we give a characterization of $\log J_f$ belongs to
$\widetilde{\mathcal{B}}_p$ or $\widetilde{\mathcal{Q}}_p$ spaces for any
locally univalent sense-preserving harmonic mappings $f$ defined in the unit
disk, using the Schwarzian derivative of $f$ and Carleson meseaure. In
addition, we introduce the classes $\mathcal{BT}_p$ and $\mathcal{QT}_p$, based
on the Jacobian operator, and begin a study of these.