从谐波映射的施瓦兹导数看贝索夫和 $Q_p$ 空间的性质

Hugo Arbeláez, Rodrigo Hernández, Willy Sierra
{"title":"从谐波映射的施瓦兹导数看贝索夫和 $Q_p$ 空间的性质","authors":"Hugo Arbeláez, Rodrigo Hernández, Willy Sierra","doi":"arxiv-2408.09062","DOIUrl":null,"url":null,"abstract":"In this paper we give a characterization of $\\log J_f$ belongs to\n$\\widetilde{\\mathcal{B}}_p$ or $\\widetilde{\\mathcal{Q}}_p$ spaces for any\nlocally univalent sense-preserving harmonic mappings $f$ defined in the unit\ndisk, using the Schwarzian derivative of $f$ and Carleson meseaure. In\naddition, we introduce the classes $\\mathcal{BT}_p$ and $\\mathcal{QT}_p$, based\non the Jacobian operator, and begin a study of these.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Besov and $Q_p$ spaces in terms of the Schwarzian derivative of harmonic mappings\",\"authors\":\"Hugo Arbeláez, Rodrigo Hernández, Willy Sierra\",\"doi\":\"arxiv-2408.09062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a characterization of $\\\\log J_f$ belongs to\\n$\\\\widetilde{\\\\mathcal{B}}_p$ or $\\\\widetilde{\\\\mathcal{Q}}_p$ spaces for any\\nlocally univalent sense-preserving harmonic mappings $f$ defined in the unit\\ndisk, using the Schwarzian derivative of $f$ and Carleson meseaure. In\\naddition, we introduce the classes $\\\\mathcal{BT}_p$ and $\\\\mathcal{QT}_p$, based\\non the Jacobian operator, and begin a study of these.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用 $f$ 的施瓦兹导数和 Carleson 梅萨ure,给出了对于定义在单位盘中的任意局部不等价保感谐波映射 $f$ 而言,$\log J_f$ 属于$\widetilde{mathcal{B}}_p$ 或 $\widetilde{mathcal{Q}}_p$ 空间的特征。此外,我们基于雅各布算子引入了 $\mathcal{BT}_p$ 和 $\mathcal{QT}_p$ 类,并开始对它们进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of Besov and $Q_p$ spaces in terms of the Schwarzian derivative of harmonic mappings
In this paper we give a characterization of $\log J_f$ belongs to $\widetilde{\mathcal{B}}_p$ or $\widetilde{\mathcal{Q}}_p$ spaces for any locally univalent sense-preserving harmonic mappings $f$ defined in the unit disk, using the Schwarzian derivative of $f$ and Carleson meseaure. In addition, we introduce the classes $\mathcal{BT}_p$ and $\mathcal{QT}_p$, based on the Jacobian operator, and begin a study of these.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信