与雅可比权相关的切比雪夫多项式

Jacob S. Christiansen, Olof Rubin
{"title":"与雅可比权相关的切比雪夫多项式","authors":"Jacob S. Christiansen, Olof Rubin","doi":"arxiv-2409.02623","DOIUrl":null,"url":null,"abstract":"We investigate Chebyshev polynomials corresponding to Jacobi weights and\ndetermine monotonicity properties of their related Widom factors. This\ncomplements work by Bernstein from 1930-31 where the asymptotical behavior of\nthe related Chebyshev norms was established. As a part of the proof, we analyze\na Bernstein-type inequality for Jacobi polynomials due to Chow et al. Our\nfindings shed new light on the asymptotical uniform bounds of Jacobi\npolynomials. We also show a relation between weighted Chebyshev polynomials on\nthe unit circle and Jacobi weighted Chebyshev polynomials on [-1,1]. This\ngeneralizes work by Lachance et al. In order to complete the picture we provide\nnumerical experiments on the remaining cases that our proof does not cover.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chebyshev polynomials related to Jacobi weights\",\"authors\":\"Jacob S. Christiansen, Olof Rubin\",\"doi\":\"arxiv-2409.02623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Chebyshev polynomials corresponding to Jacobi weights and\\ndetermine monotonicity properties of their related Widom factors. This\\ncomplements work by Bernstein from 1930-31 where the asymptotical behavior of\\nthe related Chebyshev norms was established. As a part of the proof, we analyze\\na Bernstein-type inequality for Jacobi polynomials due to Chow et al. Our\\nfindings shed new light on the asymptotical uniform bounds of Jacobi\\npolynomials. We also show a relation between weighted Chebyshev polynomials on\\nthe unit circle and Jacobi weighted Chebyshev polynomials on [-1,1]. This\\ngeneralizes work by Lachance et al. In order to complete the picture we provide\\nnumerical experiments on the remaining cases that our proof does not cover.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与雅可比权对应的切比雪夫多项式,并确定了其相关维多姆因子的单调性。这是对伯恩斯坦 1930-31 年工作的补充,在伯恩斯坦的工作中建立了相关切比雪夫规范的渐近行为。作为证明的一部分,我们分析了由 Chow 等人提出的雅可比多项式的伯恩斯坦型不等式。我们的发现为雅可比多项式的渐近均匀边界提供了新的启示。我们还展示了单位圆上的加权切比雪夫多项式与 [-1,1] 上的雅可比加权切比雪夫多项式之间的关系。为了使问题更加完整,我们对我们的证明没有涵盖的其余情况进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chebyshev polynomials related to Jacobi weights
We investigate Chebyshev polynomials corresponding to Jacobi weights and determine monotonicity properties of their related Widom factors. This complements work by Bernstein from 1930-31 where the asymptotical behavior of the related Chebyshev norms was established. As a part of the proof, we analyze a Bernstein-type inequality for Jacobi polynomials due to Chow et al. Our findings shed new light on the asymptotical uniform bounds of Jacobi polynomials. We also show a relation between weighted Chebyshev polynomials on the unit circle and Jacobi weighted Chebyshev polynomials on [-1,1]. This generalizes work by Lachance et al. In order to complete the picture we provide numerical experiments on the remaining cases that our proof does not cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信