{"title":"反切双曲函数第一类完全椭圆积分的锐界","authors":"Zhen-Hang Yang, Jing-Feng Tian","doi":"10.1007/s10986-024-09644-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal{K}\\)</span>(<i>r</i>) and arctanh <i>r</i> for <i>r</i> ∈ (0<i>,</i> 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality</p><p><span>\\({\\Phi }_{p}\\left({r}{\\prime}\\right)\\frac{\\text{arctanh}r}{r}<\\frac{2}{\\pi }\\mathcal{K}\\left(r\\right)<{\\Phi }_{q}\\left({r}{\\prime}\\right)\\frac{\\text{arctanh}r}{r}\\)</span></p><p>holds for <i>r</i> ∈ (0<i>,</i> 1) if and only if <i>q</i> ⩽ 56 543/20 976 and 23(90π − 233)/(10(69π − 178)) ⩽ <i>p</i> ⩽ 3, where <i>r</i>′ <span>\\(\\sqrt{1-{r}^{2}}\\)</span> and</p><p><span>\\({\\Phi }_{q}\\left(x\\right)=60\\frac{\\left(17q-41\\right){x}^{2}+6qx+69-23q}{\\left(620q-1521\\right){x}^{2}+2\\left(580q-1079\\right)x+5359-1780q}\\)</span></p><p>for <i>q</i> ⩽ 3 and <i>x</i> ∈ (0<i>,</i> 1). This improves some known results and yields several new bounds for the Gauss arithmetic–geometric mean.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds for the complete elliptic integral of the first kind in term of the inverse tangent hyperbolic function\",\"authors\":\"Zhen-Hang Yang, Jing-Feng Tian\",\"doi\":\"10.1007/s10986-024-09644-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathcal{K}\\\\)</span>(<i>r</i>) and arctanh <i>r</i> for <i>r</i> ∈ (0<i>,</i> 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality</p><p><span>\\\\({\\\\Phi }_{p}\\\\left({r}{\\\\prime}\\\\right)\\\\frac{\\\\text{arctanh}r}{r}<\\\\frac{2}{\\\\pi }\\\\mathcal{K}\\\\left(r\\\\right)<{\\\\Phi }_{q}\\\\left({r}{\\\\prime}\\\\right)\\\\frac{\\\\text{arctanh}r}{r}\\\\)</span></p><p>holds for <i>r</i> ∈ (0<i>,</i> 1) if and only if <i>q</i> ⩽ 56 543/20 976 and 23(90π − 233)/(10(69π − 178)) ⩽ <i>p</i> ⩽ 3, where <i>r</i>′ <span>\\\\(\\\\sqrt{1-{r}^{2}}\\\\)</span> and</p><p><span>\\\\({\\\\Phi }_{q}\\\\left(x\\\\right)=60\\\\frac{\\\\left(17q-41\\\\right){x}^{2}+6qx+69-23q}{\\\\left(620q-1521\\\\right){x}^{2}+2\\\\left(580q-1079\\\\right)x+5359-1780q}\\\\)</span></p><p>for <i>q</i> ⩽ 3 and <i>x</i> ∈ (0<i>,</i> 1). This improves some known results and yields several new bounds for the Gauss arithmetic–geometric mean.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09644-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09644-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp bounds for the complete elliptic integral of the first kind in term of the inverse tangent hyperbolic function
Let \(\mathcal{K}\)(r) and arctanh r for r ∈ (0, 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality