反切双曲函数第一类完全椭圆积分的锐界

Pub Date : 2024-09-03 DOI:10.1007/s10986-024-09644-0
Zhen-Hang Yang, Jing-Feng Tian
{"title":"反切双曲函数第一类完全椭圆积分的锐界","authors":"Zhen-Hang Yang, Jing-Feng Tian","doi":"10.1007/s10986-024-09644-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal{K}\\)</span>(<i>r</i>) and arctanh <i>r</i> for <i>r</i> ∈ (0<i>,</i> 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality</p><p><span>\\({\\Phi }_{p}\\left({r}{\\prime}\\right)\\frac{\\text{arctanh}r}{r}&lt;\\frac{2}{\\pi }\\mathcal{K}\\left(r\\right)&lt;{\\Phi }_{q}\\left({r}{\\prime}\\right)\\frac{\\text{arctanh}r}{r}\\)</span></p><p>holds for <i>r</i> ∈ (0<i>,</i> 1) if and only if <i>q</i> ⩽ 56 543/20 976 and 23(90π − 233)/(10(69π − 178)) ⩽ <i>p</i> ⩽ 3, where <i>r</i>′ <span>\\(\\sqrt{1-{r}^{2}}\\)</span> and</p><p><span>\\({\\Phi }_{q}\\left(x\\right)=60\\frac{\\left(17q-41\\right){x}^{2}+6qx+69-23q}{\\left(620q-1521\\right){x}^{2}+2\\left(580q-1079\\right)x+5359-1780q}\\)</span></p><p>for <i>q</i> ⩽ 3 and <i>x</i> ∈ (0<i>,</i> 1). This improves some known results and yields several new bounds for the Gauss arithmetic–geometric mean.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds for the complete elliptic integral of the first kind in term of the inverse tangent hyperbolic function\",\"authors\":\"Zhen-Hang Yang, Jing-Feng Tian\",\"doi\":\"10.1007/s10986-024-09644-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathcal{K}\\\\)</span>(<i>r</i>) and arctanh <i>r</i> for <i>r</i> ∈ (0<i>,</i> 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality</p><p><span>\\\\({\\\\Phi }_{p}\\\\left({r}{\\\\prime}\\\\right)\\\\frac{\\\\text{arctanh}r}{r}&lt;\\\\frac{2}{\\\\pi }\\\\mathcal{K}\\\\left(r\\\\right)&lt;{\\\\Phi }_{q}\\\\left({r}{\\\\prime}\\\\right)\\\\frac{\\\\text{arctanh}r}{r}\\\\)</span></p><p>holds for <i>r</i> ∈ (0<i>,</i> 1) if and only if <i>q</i> ⩽ 56 543/20 976 and 23(90π − 233)/(10(69π − 178)) ⩽ <i>p</i> ⩽ 3, where <i>r</i>′ <span>\\\\(\\\\sqrt{1-{r}^{2}}\\\\)</span> and</p><p><span>\\\\({\\\\Phi }_{q}\\\\left(x\\\\right)=60\\\\frac{\\\\left(17q-41\\\\right){x}^{2}+6qx+69-23q}{\\\\left(620q-1521\\\\right){x}^{2}+2\\\\left(580q-1079\\\\right)x+5359-1780q}\\\\)</span></p><p>for <i>q</i> ⩽ 3 and <i>x</i> ∈ (0<i>,</i> 1). This improves some known results and yields several new bounds for the Gauss arithmetic–geometric mean.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09644-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09644-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 r∈ (0, 1) 的 \(\mathcal{K}\)(r) 和 arctanh r 分别是第一类完全椭圆积分和反切双曲函数。本文将证明双重不等式({\Phi }_{p}\left({r}{prime}\right)\frac{text{arctanh}r}{r}<\frac{2}{\pi }\mathcal{K}\left(r\right)<;{當且僅當 q ⩽ 56 543/20 976 且 23(90π - 233)/(10(69π - 178))⩽ p ⩽ 3 時,r∈(0,1)成立、其中 r′((sqrt{1-{r}^{2}})和({\Phi }_{q}\left(x\right)=60rac{left(17q-41\right){x}^{2}+6qx+69-23q}{left(620q-1521\right){x}^{2}+2\left(580q-1079\right)x+5359-1780q})对于 q ⩽ 3 和 x ∈ (0、1).这改进了一些已知结果,并产生了高斯算术几何平均数的几个新边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp bounds for the complete elliptic integral of the first kind in term of the inverse tangent hyperbolic function

Let \(\mathcal{K}\)(r) and arctanh r for r ∈ (0, 1) be the complete elliptic integral of the first kind and the inverse tangent hyperbolic function, respectively. In this paper, we prove that the double inequality

\({\Phi }_{p}\left({r}{\prime}\right)\frac{\text{arctanh}r}{r}<\frac{2}{\pi }\mathcal{K}\left(r\right)<{\Phi }_{q}\left({r}{\prime}\right)\frac{\text{arctanh}r}{r}\)

holds for r ∈ (0, 1) if and only if q ⩽ 56 543/20 976 and 23(90π − 233)/(10(69π − 178)) ⩽ p ⩽ 3, where r\(\sqrt{1-{r}^{2}}\) and

\({\Phi }_{q}\left(x\right)=60\frac{\left(17q-41\right){x}^{2}+6qx+69-23q}{\left(620q-1521\right){x}^{2}+2\left(580q-1079\right)x+5359-1780q}\)

for q ⩽ 3 and x ∈ (0, 1). This improves some known results and yields several new bounds for the Gauss arithmetic–geometric mean.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信