外延范畴上可容许的弱因式分解系统

Yajun Ma, Hanyang You, Dongdong Zhang, Panyue Zhou
{"title":"外延范畴上可容许的弱因式分解系统","authors":"Yajun Ma, Hanyang You, Dongdong Zhang, Panyue Zhou","doi":"arxiv-2408.13548","DOIUrl":null,"url":null,"abstract":"Extriangulated categories, introduced by Nakaoka and Palu, serve as a\nsimultaneous generalization of exact and triangulated categories. In this\npaper, we first introduce the concept of admissible weak factorization systems\nand establish a bijection between cotorsion pairs and admissible weak\nfactorization systems in extriangulated categories. Consequently, we give the\nequivalences between hereditary cotorsion pairs and compatible cotorsion pairs\nvia admissible weak factorization systems under certain conditions in\nextriangulated categories, thereby generalizing a result by Di, Li, and Liang.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Admissible weak factorization systems on extriangulated categories\",\"authors\":\"Yajun Ma, Hanyang You, Dongdong Zhang, Panyue Zhou\",\"doi\":\"arxiv-2408.13548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extriangulated categories, introduced by Nakaoka and Palu, serve as a\\nsimultaneous generalization of exact and triangulated categories. In this\\npaper, we first introduce the concept of admissible weak factorization systems\\nand establish a bijection between cotorsion pairs and admissible weak\\nfactorization systems in extriangulated categories. Consequently, we give the\\nequivalences between hereditary cotorsion pairs and compatible cotorsion pairs\\nvia admissible weak factorization systems under certain conditions in\\nextriangulated categories, thereby generalizing a result by Di, Li, and Liang.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中冈(Nakaoka)和帕鲁(Palu)提出的外切范畴是精确范畴和三角范畴的同时广义化。在本文中,我们首先引入了可容许弱因式分解系统的概念,并在外切范畴中建立了扭转对与可容许弱因式分解系统之间的双射关系。因此,我们给出了在一定条件下,在外切范畴中,遗传扭转对和相容扭转对通过可容许弱因式分解系统之间的等价关系,从而推广了笛卡尔、李和梁的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Admissible weak factorization systems on extriangulated categories
Extriangulated categories, introduced by Nakaoka and Palu, serve as a simultaneous generalization of exact and triangulated categories. In this paper, we first introduce the concept of admissible weak factorization systems and establish a bijection between cotorsion pairs and admissible weak factorization systems in extriangulated categories. Consequently, we give the equivalences between hereditary cotorsion pairs and compatible cotorsion pairs via admissible weak factorization systems under certain conditions in extriangulated categories, thereby generalizing a result by Di, Li, and Liang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信