直观命题逻辑中的并行和代数λ演算法

Alejandro Díaz-Caro, Octavio Malherbe
{"title":"直观命题逻辑中的并行和代数λ演算法","authors":"Alejandro Díaz-Caro, Octavio Malherbe","doi":"arxiv-2408.16102","DOIUrl":null,"url":null,"abstract":"We introduce a novel model that interprets the parallel operator, also\npresent in algebraic calculi, within the context of propositional logic. This\ninterpretation uses the category $\\mathbf{Mag}_{\\mathbf{Set}}$, whose objects\nare magmas and whose arrows are functions from the category $\\mathbf{Set}$,\nspecifically for the case of the parallel lambda calculus. Similarly, we use\nthe category $\\mathbf{AMag}^{\\mathcal S}_{\\mathbf{Set}}$, whose objects are\naction magmas and whose arrows are also functions from the category\n$\\mathbf{Set}$, for the case of the algebraic lambda calculus. Our approach\ndiverges from conventional interpretations where disjunctions are handled by\ncoproducts, instead proposing to handle them with the union of disjoint union\nand the Cartesian product.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"475 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel and algebraic lambda-calculi in intuitionistic propositional logic\",\"authors\":\"Alejandro Díaz-Caro, Octavio Malherbe\",\"doi\":\"arxiv-2408.16102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel model that interprets the parallel operator, also\\npresent in algebraic calculi, within the context of propositional logic. This\\ninterpretation uses the category $\\\\mathbf{Mag}_{\\\\mathbf{Set}}$, whose objects\\nare magmas and whose arrows are functions from the category $\\\\mathbf{Set}$,\\nspecifically for the case of the parallel lambda calculus. Similarly, we use\\nthe category $\\\\mathbf{AMag}^{\\\\mathcal S}_{\\\\mathbf{Set}}$, whose objects are\\naction magmas and whose arrows are also functions from the category\\n$\\\\mathbf{Set}$, for the case of the algebraic lambda calculus. Our approach\\ndiverges from conventional interpretations where disjunctions are handled by\\ncoproducts, instead proposing to handle them with the union of disjoint union\\nand the Cartesian product.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"475 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新模型,在命题逻辑的语境中解释代数计算中也存在的并行算子。这种解释使用了$\mathbf{Mag}_{\mathbf{Set}}$范畴,其对象是岩浆,其箭头是来自$\mathbf{Set}$范畴的函数,特别是针对并行λ微积分的情况。同样,我们使用$\mathbf{AMag}^{\mathcal S}_{mathbf{Set}}$这个范畴来处理代数λ微积分的情况,这个范畴的对象是作用岩浆,其箭头也是来自$\mathbf{Set}$范畴的函数。我们的方法偏离了用乘积来处理不连接的传统解释,而是提议用不连接的联合和笛卡尔乘积来处理它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel and algebraic lambda-calculi in intuitionistic propositional logic
We introduce a novel model that interprets the parallel operator, also present in algebraic calculi, within the context of propositional logic. This interpretation uses the category $\mathbf{Mag}_{\mathbf{Set}}$, whose objects are magmas and whose arrows are functions from the category $\mathbf{Set}$, specifically for the case of the parallel lambda calculus. Similarly, we use the category $\mathbf{AMag}^{\mathcal S}_{\mathbf{Set}}$, whose objects are action magmas and whose arrows are also functions from the category $\mathbf{Set}$, for the case of the algebraic lambda calculus. Our approach diverges from conventional interpretations where disjunctions are handled by coproducts, instead proposing to handle them with the union of disjoint union and the Cartesian product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信