{"title":"更多关于丰富背景下的健全性问题","authors":"Giacomo Tendas","doi":"arxiv-2409.00389","DOIUrl":null,"url":null,"abstract":"Working within enriched category theory, we further develop the use of\nsoundness, introduced by Ad\\'amek, Borceux, Lack, and Rosick\\'y for ordinary\ncategories. In particular we investigate: (1) the theory of locally\n$\\Phi$-presentable $\\mathcal V$-categories for a sound class $\\Phi$, (2) the\nproblem of whether every $\\Phi$-accessible $\\mathcal V$-category is\n$\\Psi$-accessible, for given sound classes $\\Phi\\subseteq\\Psi$, and (3) a\nnotion of $\\Phi$-ary equational theory whose $\\mathcal V$-categories of models\ncharacterize algebras for $\\Phi$-ary monads on $\\mathcal V$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More on soundness in the enriched context\",\"authors\":\"Giacomo Tendas\",\"doi\":\"arxiv-2409.00389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working within enriched category theory, we further develop the use of\\nsoundness, introduced by Ad\\\\'amek, Borceux, Lack, and Rosick\\\\'y for ordinary\\ncategories. In particular we investigate: (1) the theory of locally\\n$\\\\Phi$-presentable $\\\\mathcal V$-categories for a sound class $\\\\Phi$, (2) the\\nproblem of whether every $\\\\Phi$-accessible $\\\\mathcal V$-category is\\n$\\\\Psi$-accessible, for given sound classes $\\\\Phi\\\\subseteq\\\\Psi$, and (3) a\\nnotion of $\\\\Phi$-ary equational theory whose $\\\\mathcal V$-categories of models\\ncharacterize algebras for $\\\\Phi$-ary monads on $\\\\mathcal V$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Working within enriched category theory, we further develop the use of
soundness, introduced by Ad\'amek, Borceux, Lack, and Rosick\'y for ordinary
categories. In particular we investigate: (1) the theory of locally
$\Phi$-presentable $\mathcal V$-categories for a sound class $\Phi$, (2) the
problem of whether every $\Phi$-accessible $\mathcal V$-category is
$\Psi$-accessible, for given sound classes $\Phi\subseteq\Psi$, and (3) a
notion of $\Phi$-ary equational theory whose $\mathcal V$-categories of models
characterize algebras for $\Phi$-ary monads on $\mathcal V$.