更多关于丰富背景下的健全性问题

Giacomo Tendas
{"title":"更多关于丰富背景下的健全性问题","authors":"Giacomo Tendas","doi":"arxiv-2409.00389","DOIUrl":null,"url":null,"abstract":"Working within enriched category theory, we further develop the use of\nsoundness, introduced by Ad\\'amek, Borceux, Lack, and Rosick\\'y for ordinary\ncategories. In particular we investigate: (1) the theory of locally\n$\\Phi$-presentable $\\mathcal V$-categories for a sound class $\\Phi$, (2) the\nproblem of whether every $\\Phi$-accessible $\\mathcal V$-category is\n$\\Psi$-accessible, for given sound classes $\\Phi\\subseteq\\Psi$, and (3) a\nnotion of $\\Phi$-ary equational theory whose $\\mathcal V$-categories of models\ncharacterize algebras for $\\Phi$-ary monads on $\\mathcal V$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More on soundness in the enriched context\",\"authors\":\"Giacomo Tendas\",\"doi\":\"arxiv-2409.00389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working within enriched category theory, we further develop the use of\\nsoundness, introduced by Ad\\\\'amek, Borceux, Lack, and Rosick\\\\'y for ordinary\\ncategories. In particular we investigate: (1) the theory of locally\\n$\\\\Phi$-presentable $\\\\mathcal V$-categories for a sound class $\\\\Phi$, (2) the\\nproblem of whether every $\\\\Phi$-accessible $\\\\mathcal V$-category is\\n$\\\\Psi$-accessible, for given sound classes $\\\\Phi\\\\subseteq\\\\Psi$, and (3) a\\nnotion of $\\\\Phi$-ary equational theory whose $\\\\mathcal V$-categories of models\\ncharacterize algebras for $\\\\Phi$-ary monads on $\\\\mathcal V$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在丰富范畴理论中,我们进一步发展了由阿德梅克(Ad\'amek)、博尔科(Borceux)、拉克(Lack)和罗西克(Rosick\'y )针对普通范畴引入的声音的使用。我们特别研究了(1) 对于声类$\Phi$,局部$\Phi$可呈现的$\mathcal V$类的理论,(2) 是否每个$\Phi$可进入的$\mathcal V$类都是($\Psi$可进入的)问题、(3) $\Phi$-ary 等式理论的运动,其模型的 $\mathcal V$ 类别描述了 $\mathcal V$ 上 $\Phi$-ary 单子的代数式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More on soundness in the enriched context
Working within enriched category theory, we further develop the use of soundness, introduced by Ad\'amek, Borceux, Lack, and Rosick\'y for ordinary categories. In particular we investigate: (1) the theory of locally $\Phi$-presentable $\mathcal V$-categories for a sound class $\Phi$, (2) the problem of whether every $\Phi$-accessible $\mathcal V$-category is $\Psi$-accessible, for given sound classes $\Phi\subseteq\Psi$, and (3) a notion of $\Phi$-ary equational theory whose $\mathcal V$-categories of models characterize algebras for $\Phi$-ary monads on $\mathcal V$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信