{"title":"基于测量系统的环形圆柱调谐液体阻尼器动态控制研究","authors":"Taehyeong Kim, Seongyong Kim, Kyungjun Song","doi":"10.1007/s12206-024-0808-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents design method for a tuned liquid damper (TLD) to improve the stability of measurement system based on a spar buoy. Firstly, a TLD was designed utilizing the double-partition hull structure of spar buoy, and the theoretical natural sloshing frequency for this design was calculated. Next, an experimental study was conducted to verify the theoretical calculations. The experimental results showed that the natural sloshing frequency increased with the height of the fluid free-surface, and the values are in close agreement with the theoretical calculations. Finally, the TLD was installed to a free-drifting structure at sea, and the dynamic behavior reduction effect was experimentally verified. The results showed that the behavior of the structure is significantly reduced after the TLD is installed, especially for the behavior above 4 cm. The main contribution of this study is the integration of a TLD into the existing structure of the spar buoy, which enhances stability without compromising buoyancy. However, this approach is limited by the shape and volume constraints of the TLD, making it less effective across all wave-induced frequencies. Further research is required to extend its applicability to a broader range of maritime conditions.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the annular cylindrical tuned liquid damper for dynamic control of spar buoy based measurement system\",\"authors\":\"Taehyeong Kim, Seongyong Kim, Kyungjun Song\",\"doi\":\"10.1007/s12206-024-0808-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents design method for a tuned liquid damper (TLD) to improve the stability of measurement system based on a spar buoy. Firstly, a TLD was designed utilizing the double-partition hull structure of spar buoy, and the theoretical natural sloshing frequency for this design was calculated. Next, an experimental study was conducted to verify the theoretical calculations. The experimental results showed that the natural sloshing frequency increased with the height of the fluid free-surface, and the values are in close agreement with the theoretical calculations. Finally, the TLD was installed to a free-drifting structure at sea, and the dynamic behavior reduction effect was experimentally verified. The results showed that the behavior of the structure is significantly reduced after the TLD is installed, especially for the behavior above 4 cm. The main contribution of this study is the integration of a TLD into the existing structure of the spar buoy, which enhances stability without compromising buoyancy. However, this approach is limited by the shape and volume constraints of the TLD, making it less effective across all wave-induced frequencies. Further research is required to extend its applicability to a broader range of maritime conditions.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0808-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0808-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A study on the annular cylindrical tuned liquid damper for dynamic control of spar buoy based measurement system
This paper presents design method for a tuned liquid damper (TLD) to improve the stability of measurement system based on a spar buoy. Firstly, a TLD was designed utilizing the double-partition hull structure of spar buoy, and the theoretical natural sloshing frequency for this design was calculated. Next, an experimental study was conducted to verify the theoretical calculations. The experimental results showed that the natural sloshing frequency increased with the height of the fluid free-surface, and the values are in close agreement with the theoretical calculations. Finally, the TLD was installed to a free-drifting structure at sea, and the dynamic behavior reduction effect was experimentally verified. The results showed that the behavior of the structure is significantly reduced after the TLD is installed, especially for the behavior above 4 cm. The main contribution of this study is the integration of a TLD into the existing structure of the spar buoy, which enhances stability without compromising buoyancy. However, this approach is limited by the shape and volume constraints of the TLD, making it less effective across all wave-induced frequencies. Further research is required to extend its applicability to a broader range of maritime conditions.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.