{"title":"基于加工表面形貌快速准确识别刀具-工件相对振动的新方法","authors":"Guocai Du, Jiasheng Li, Ming Huang, Hong Yang","doi":"10.1007/s12206-024-0701-0","DOIUrl":null,"url":null,"abstract":"<p>This study utilizes the improved fast and adaptive bidimensional empirical modal decomposition (IFABEMD) method to study the impact of relative vibration between the tool and the workpiece on surface topography. The sieving stop condition is determined based on the difference in standard deviation, effectively addressing the issue of modal mixing in the traditional bidimensional empirical modal (BEMD) method. Additionally, a novel boundary extension method is proposed using the Gerchberg algorithm. The decomposition example demonstrates that the IFABEMD method can effectively handle modal mixing and boundary effects. Finally, the relative vibration frequencies between the tool and the workpiece are identified by analyzing the spatial spectrum of the feature surface with vibration information. Simulation and experimental surface morphology decomposition results validate the effectiveness of the IFABEMD method in identifying relative vibration between the tool and the workpiece.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":"62 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for fast and accurate identification of tool-workpiece relative vibration based on machining surface topography\",\"authors\":\"Guocai Du, Jiasheng Li, Ming Huang, Hong Yang\",\"doi\":\"10.1007/s12206-024-0701-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study utilizes the improved fast and adaptive bidimensional empirical modal decomposition (IFABEMD) method to study the impact of relative vibration between the tool and the workpiece on surface topography. The sieving stop condition is determined based on the difference in standard deviation, effectively addressing the issue of modal mixing in the traditional bidimensional empirical modal (BEMD) method. Additionally, a novel boundary extension method is proposed using the Gerchberg algorithm. The decomposition example demonstrates that the IFABEMD method can effectively handle modal mixing and boundary effects. Finally, the relative vibration frequencies between the tool and the workpiece are identified by analyzing the spatial spectrum of the feature surface with vibration information. Simulation and experimental surface morphology decomposition results validate the effectiveness of the IFABEMD method in identifying relative vibration between the tool and the workpiece.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0701-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0701-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A new method for fast and accurate identification of tool-workpiece relative vibration based on machining surface topography
This study utilizes the improved fast and adaptive bidimensional empirical modal decomposition (IFABEMD) method to study the impact of relative vibration between the tool and the workpiece on surface topography. The sieving stop condition is determined based on the difference in standard deviation, effectively addressing the issue of modal mixing in the traditional bidimensional empirical modal (BEMD) method. Additionally, a novel boundary extension method is proposed using the Gerchberg algorithm. The decomposition example demonstrates that the IFABEMD method can effectively handle modal mixing and boundary effects. Finally, the relative vibration frequencies between the tool and the workpiece are identified by analyzing the spatial spectrum of the feature surface with vibration information. Simulation and experimental surface morphology decomposition results validate the effectiveness of the IFABEMD method in identifying relative vibration between the tool and the workpiece.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.