SU(3) 高根及其网格

Robert Coquereaux
{"title":"SU(3) 高根及其网格","authors":"Robert Coquereaux","doi":"arxiv-2409.02926","DOIUrl":null,"url":null,"abstract":"After recalling the notion of higher roots (or hyper-roots) associated with\n\"quantum modules\" of type $(G, k)$, for $G$ a semi-simple Lie group and $k$ a\npositive integer, following the definition given by A. Ocneanu in 2000, we\nstudy the theta series of their lattices. Here we only consider the higher\nroots associated with quantum modules (aka module-categories over the fusion\ncategory defined by the pair $(G,k)$) that are also \"quantum subgroups\". For\n$G=SU{2}$ the notion of higher roots coincides with the usual notion of roots\nfor ADE Dynkin diagrams and the self-fusion restriction (the property of being\na quantum subgroup) selects the diagrams of type $A_{r}$, $D_{r}$ with $r$\neven, $E_6$ and $E_8$; their theta series are well known. In this paper we take\n$G=SU{3}$, where the same restriction selects the modules ${\\mathcal A}_k$,\n${\\mathcal D}_k$ with $mod(k,3)=0$, and the three exceptional cases ${\\mathcal\nE}_5$, ${\\mathcal E}_9$ and ${\\mathcal E}_{21}$. The theta series for their\nassociated lattices are expressed in terms of modular forms twisted by\nappropriate Dirichlet characters.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SU(3) higher roots and their lattices\",\"authors\":\"Robert Coquereaux\",\"doi\":\"arxiv-2409.02926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After recalling the notion of higher roots (or hyper-roots) associated with\\n\\\"quantum modules\\\" of type $(G, k)$, for $G$ a semi-simple Lie group and $k$ a\\npositive integer, following the definition given by A. Ocneanu in 2000, we\\nstudy the theta series of their lattices. Here we only consider the higher\\nroots associated with quantum modules (aka module-categories over the fusion\\ncategory defined by the pair $(G,k)$) that are also \\\"quantum subgroups\\\". For\\n$G=SU{2}$ the notion of higher roots coincides with the usual notion of roots\\nfor ADE Dynkin diagrams and the self-fusion restriction (the property of being\\na quantum subgroup) selects the diagrams of type $A_{r}$, $D_{r}$ with $r$\\neven, $E_6$ and $E_8$; their theta series are well known. In this paper we take\\n$G=SU{3}$, where the same restriction selects the modules ${\\\\mathcal A}_k$,\\n${\\\\mathcal D}_k$ with $mod(k,3)=0$, and the three exceptional cases ${\\\\mathcal\\nE}_5$, ${\\\\mathcal E}_9$ and ${\\\\mathcal E}_{21}$. The theta series for their\\nassociated lattices are expressed in terms of modular forms twisted by\\nappropriate Dirichlet characters.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在回顾了与$(G, k)$类型的 "量子模块 "相关的高根(或超根)的概念之后,对于$G$一个半简单李群和$k$一个正整数,按照奥克纳努(A. Ocneanu)在2000年给出的定义,西udy了它们网格的θ级数。在这里,我们只考虑与量子模块(又称由一对 $(G,k)$ 定义的融合范畴上的模块范畴)相关的高根,它们也是 "量子子群"。对于$G=SU{2}$,高根的概念与 ADE Dynkin 图的通常根概念相吻合,而自融合限制(作为量子子群的属性)选择了 $A_{r}$、$D_{r}$ 类型的图,其中 $r$ 为偶数、$E_6$ 和 $E_8$;它们的θ 系列是众所周知的。在本文中,我们取$G=SU{3}$,同样的限制选择了模块 ${mathcal A}_k$, ${mathcal D}_k$ 与 $mod(k,3)=0$,以及三种特殊情况 ${mathcalE}_5$, ${mathcal E}_9$ 和 ${mathcal E}_{21}$。它们相关晶格的 Theta 级数用由适当的 Dirichlet 字符扭转的模形式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SU(3) higher roots and their lattices
After recalling the notion of higher roots (or hyper-roots) associated with "quantum modules" of type $(G, k)$, for $G$ a semi-simple Lie group and $k$ a positive integer, following the definition given by A. Ocneanu in 2000, we study the theta series of their lattices. Here we only consider the higher roots associated with quantum modules (aka module-categories over the fusion category defined by the pair $(G,k)$) that are also "quantum subgroups". For $G=SU{2}$ the notion of higher roots coincides with the usual notion of roots for ADE Dynkin diagrams and the self-fusion restriction (the property of being a quantum subgroup) selects the diagrams of type $A_{r}$, $D_{r}$ with $r$ even, $E_6$ and $E_8$; their theta series are well known. In this paper we take $G=SU{3}$, where the same restriction selects the modules ${\mathcal A}_k$, ${\mathcal D}_k$ with $mod(k,3)=0$, and the three exceptional cases ${\mathcal E}_5$, ${\mathcal E}_9$ and ${\mathcal E}_{21}$. The theta series for their associated lattices are expressed in terms of modular forms twisted by appropriate Dirichlet characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信