{"title":"紧凑和离散量子群在冯-诺依曼代数上的可修正作用","authors":"K. De Commer, J. De Ro","doi":"arxiv-2408.05571","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{G}$ be a compact quantum group and $A\\subseteq B$ an inclusion\nof $\\sigma$-finite $\\mathbb{G}$-dynamical von Neumann algebras. We prove that\nthe $\\mathbb{G}$-inclusion $A\\subseteq B$ is strongly equivariantly amenable if\nand only if it is equivariantly amenable, using techniques from the theory of\nnon-commutative $L^p$-spaces. In particular, if $(A, \\alpha)$ is a\n$\\mathbb{G}$-dynamical von Neumann algebra with $A$ $\\sigma$-finite, the action\n$\\alpha: A \\curvearrowleft \\mathbb{G}$ is strongly (inner) amenable if and only\nif the action $\\alpha: A \\curvearrowleft \\mathbb{G}$ is (inner) amenable. By\nduality, we also obtain the same result for $\\mathbb{G}$ a discrete quantum\ngroup, so that, in particular, a discrete quantum group is inner amenable if\nand only it is strongly inner amenable. This result can be seen as a dynamical\ngeneralization of Tomatsu's result on the amenability/co-amenability duality.\nWe provide an example of a co-amenable (non-Kac) compact quantum group that\nacts non-amenably on a von Neumann algebra. By duality, this gives an explicit\nexample of an amenable discrete quantum group that acts non-amenably on a von\nNeumann algebra.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amenable actions of compact and discrete quantum groups on von Neumann algebras\",\"authors\":\"K. De Commer, J. De Ro\",\"doi\":\"arxiv-2408.05571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{G}$ be a compact quantum group and $A\\\\subseteq B$ an inclusion\\nof $\\\\sigma$-finite $\\\\mathbb{G}$-dynamical von Neumann algebras. We prove that\\nthe $\\\\mathbb{G}$-inclusion $A\\\\subseteq B$ is strongly equivariantly amenable if\\nand only if it is equivariantly amenable, using techniques from the theory of\\nnon-commutative $L^p$-spaces. In particular, if $(A, \\\\alpha)$ is a\\n$\\\\mathbb{G}$-dynamical von Neumann algebra with $A$ $\\\\sigma$-finite, the action\\n$\\\\alpha: A \\\\curvearrowleft \\\\mathbb{G}$ is strongly (inner) amenable if and only\\nif the action $\\\\alpha: A \\\\curvearrowleft \\\\mathbb{G}$ is (inner) amenable. By\\nduality, we also obtain the same result for $\\\\mathbb{G}$ a discrete quantum\\ngroup, so that, in particular, a discrete quantum group is inner amenable if\\nand only it is strongly inner amenable. This result can be seen as a dynamical\\ngeneralization of Tomatsu's result on the amenability/co-amenability duality.\\nWe provide an example of a co-amenable (non-Kac) compact quantum group that\\nacts non-amenably on a von Neumann algebra. By duality, this gives an explicit\\nexample of an amenable discrete quantum group that acts non-amenably on a von\\nNeumann algebra.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 $\mathbb{G}$ 是一个紧凑的量子群,而 $A\subseteq B$ 是$\sigma$-finite$\mathbb{G}$-dynamical von Neumann algebras 的一个包含。我们利用非交换$L^p$空间理论中的技术证明,$\mathbb{G}$包含$A/subseteq B$是强等变可容性的,当且仅当它是等变可容性的。特别是,如果 $(A, \alpha)$ 是一个具有 $A$ $sigma$ 有限性的 $mathbb{G}$ 动态 von Neumann 代数,那么作用$\alpha:当且仅当动作$alpha:A \curvearrowleft \mathbb{G}$ 是(内部)可处理的。通过对偶性,我们对离散量子群的 $\mathbb{G}$ 也得到了同样的结果,因此,只有当且仅当一个离散量子群是强内可容性的时候,它才是内可容性的。我们举例说明了一个在 von Neumann 代数上非可门地作用的可门(非 Kac)紧凑量子群。根据对偶性,这给出了一个非可门性地作用于 von Neumann 代数的可门性离散量子群的实例。
Amenable actions of compact and discrete quantum groups on von Neumann algebras
Let $\mathbb{G}$ be a compact quantum group and $A\subseteq B$ an inclusion
of $\sigma$-finite $\mathbb{G}$-dynamical von Neumann algebras. We prove that
the $\mathbb{G}$-inclusion $A\subseteq B$ is strongly equivariantly amenable if
and only if it is equivariantly amenable, using techniques from the theory of
non-commutative $L^p$-spaces. In particular, if $(A, \alpha)$ is a
$\mathbb{G}$-dynamical von Neumann algebra with $A$ $\sigma$-finite, the action
$\alpha: A \curvearrowleft \mathbb{G}$ is strongly (inner) amenable if and only
if the action $\alpha: A \curvearrowleft \mathbb{G}$ is (inner) amenable. By
duality, we also obtain the same result for $\mathbb{G}$ a discrete quantum
group, so that, in particular, a discrete quantum group is inner amenable if
and only it is strongly inner amenable. This result can be seen as a dynamical
generalization of Tomatsu's result on the amenability/co-amenability duality.
We provide an example of a co-amenable (non-Kac) compact quantum group that
acts non-amenably on a von Neumann algebra. By duality, this gives an explicit
example of an amenable discrete quantum group that acts non-amenably on a von
Neumann algebra.