Cayley 分量中的共形极限和 $Θ$ 正 opers

Georgios Kydonakis, Mengxue Yang
{"title":"Cayley 分量中的共形极限和 $Θ$ 正 opers","authors":"Georgios Kydonakis, Mengxue Yang","doi":"arxiv-2408.06198","DOIUrl":null,"url":null,"abstract":"We study Gaiotto's conformal limit for the $G^{\\mathbb{R}}$-Hitchin\nequations, when $G^{\\mathbb{R}}$ is a simple real Lie group admitting a\n$\\Theta$-positive structure. We identify a family of flat connections coming\nfrom certain solutions to the equations for which the conformal limit exists\nand admits the structure of an oper. We call this new class of opers appearing\nin the conformal limit $\\Theta$-positive opers. The two families involved are\nparameterized by the same base space. This space is a generalization of the\nbase of Hitchin's integrable system in the case when the structure group is a\nsplit real group.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal limits in Cayley components and $Θ$-positive opers\",\"authors\":\"Georgios Kydonakis, Mengxue Yang\",\"doi\":\"arxiv-2408.06198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Gaiotto's conformal limit for the $G^{\\\\mathbb{R}}$-Hitchin\\nequations, when $G^{\\\\mathbb{R}}$ is a simple real Lie group admitting a\\n$\\\\Theta$-positive structure. We identify a family of flat connections coming\\nfrom certain solutions to the equations for which the conformal limit exists\\nand admits the structure of an oper. We call this new class of opers appearing\\nin the conformal limit $\\\\Theta$-positive opers. The two families involved are\\nparameterized by the same base space. This space is a generalization of the\\nbase of Hitchin's integrable system in the case when the structure group is a\\nsplit real group.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了当 $G^{mathbb{R}}$ 是一个简单实李群并容许$\Theta$-正结构时,Gaiotto 对 $G^{mathbb{R}}$-Hitchinequations 的共形极限。我们从方程的某些解中发现了一系列平连接,这些解存在保角极限,并具有运算符结构。我们把这一类出现在共形极限中的新运算符称为 $\Theta$ 正运算符。所涉及的两个系是由同一个基空间参数化的。这个空间是希钦可积分系统在结构群为分裂实群情况下的基空间的广义化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal limits in Cayley components and $Θ$-positive opers
We study Gaiotto's conformal limit for the $G^{\mathbb{R}}$-Hitchin equations, when $G^{\mathbb{R}}$ is a simple real Lie group admitting a $\Theta$-positive structure. We identify a family of flat connections coming from certain solutions to the equations for which the conformal limit exists and admits the structure of an oper. We call this new class of opers appearing in the conformal limit $\Theta$-positive opers. The two families involved are parameterized by the same base space. This space is a generalization of the base of Hitchin's integrable system in the case when the structure group is a split real group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信