量子游戏与同步性

Adina Goldberg
{"title":"量子游戏与同步性","authors":"Adina Goldberg","doi":"arxiv-2408.15444","DOIUrl":null,"url":null,"abstract":"In the flavour of categorical quantum mechanics, we extend nonlocal games to\nallow quantum questions and answers, using quantum sets (special symmetric\ndagger Frobenius algebras) and the quantum functions of arXiv:1711.07945.\nEquations are presented using a diagrammatic calculus for tensor categories. To\nthis quantum question and answer setting, we extend the standard definitions,\nincluding strategies, correlations, and synchronicity, and we use these\ndefinitions to extend results about synchronicity. We extend the graph\nhomomorphism (isomorphism) game to quantum graphs, and show it is synchronous\n(bisynchronous) and that its perfect quantum-commuting (bi)strategies are\nquantum graph homomorphisms (isomorphisms). Our extended definitions agree with\nthe existing quantum games literature, except in the case of synchronicity.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Games and Synchronicity\",\"authors\":\"Adina Goldberg\",\"doi\":\"arxiv-2408.15444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the flavour of categorical quantum mechanics, we extend nonlocal games to\\nallow quantum questions and answers, using quantum sets (special symmetric\\ndagger Frobenius algebras) and the quantum functions of arXiv:1711.07945.\\nEquations are presented using a diagrammatic calculus for tensor categories. To\\nthis quantum question and answer setting, we extend the standard definitions,\\nincluding strategies, correlations, and synchronicity, and we use these\\ndefinitions to extend results about synchronicity. We extend the graph\\nhomomorphism (isomorphism) game to quantum graphs, and show it is synchronous\\n(bisynchronous) and that its perfect quantum-commuting (bi)strategies are\\nquantum graph homomorphisms (isomorphisms). Our extended definitions agree with\\nthe existing quantum games literature, except in the case of synchronicity.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分类量子力学的风味中,我们利用量子集(特殊对称匕首弗罗贝尼斯代数)和 arXiv:1711.07945 的量子函数,将非局部博弈扩展到允许量子问答。在这种量子问答设置中,我们扩展了标准定义,包括策略、相关性和同步性,并利用这些定义扩展了关于同步性的结果。我们将图同态(同构)博弈扩展到量子图,并证明它是同步(双同步)的,而且它的完美量子顺式(双)策略是量子图同态(同构)的。除了同步性之外,我们的扩展定义与现有量子博弈文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Games and Synchronicity
In the flavour of categorical quantum mechanics, we extend nonlocal games to allow quantum questions and answers, using quantum sets (special symmetric dagger Frobenius algebras) and the quantum functions of arXiv:1711.07945. Equations are presented using a diagrammatic calculus for tensor categories. To this quantum question and answer setting, we extend the standard definitions, including strategies, correlations, and synchronicity, and we use these definitions to extend results about synchronicity. We extend the graph homomorphism (isomorphism) game to quantum graphs, and show it is synchronous (bisynchronous) and that its perfect quantum-commuting (bi)strategies are quantum graph homomorphisms (isomorphisms). Our extended definitions agree with the existing quantum games literature, except in the case of synchronicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信