推拉跨度的更高类别,II:矩阵因式分解

Lorenzo Riva
{"title":"推拉跨度的更高类别,II:矩阵因式分解","authors":"Lorenzo Riva","doi":"arxiv-2409.00219","DOIUrl":null,"url":null,"abstract":"This is the second part of a project aimed at formalizing Rozansky-Witten\nmodels in the functorial field theory framework. In the first part we\nconstructed a symmetric monoidal $(\\infty, 3)$-category $\\mathscr{CRW}$ of\ncommutative Rozansky-Witten models with the goal of approximating the\n$3$-category of Kapustin and Rozansky. In this paper we extend work of Brunner,\nCarqueville, Fragkos, and Roggenkamp on the affine Rozansky-Witten models: we\nexhibit a functor connecting their $2$-category of matrix factorizations with\nthe homotopy $2$-category of $\\mathscr{CRW}$, and calculate the associated\nTFTs.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher categories of push-pull spans, II: Matrix factorizations\",\"authors\":\"Lorenzo Riva\",\"doi\":\"arxiv-2409.00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second part of a project aimed at formalizing Rozansky-Witten\\nmodels in the functorial field theory framework. In the first part we\\nconstructed a symmetric monoidal $(\\\\infty, 3)$-category $\\\\mathscr{CRW}$ of\\ncommutative Rozansky-Witten models with the goal of approximating the\\n$3$-category of Kapustin and Rozansky. In this paper we extend work of Brunner,\\nCarqueville, Fragkos, and Roggenkamp on the affine Rozansky-Witten models: we\\nexhibit a functor connecting their $2$-category of matrix factorizations with\\nthe homotopy $2$-category of $\\\\mathscr{CRW}$, and calculate the associated\\nTFTs.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是一个项目的第二部分,旨在将罗赞斯基-维滕模型形式化在函子场论框架中。在第一部分中,我们以近似卡普斯丁和罗赞斯基的3元范畴为目标,构建了一个对称单元$(\infty, 3)$范畴$\mathscr{CRW}$的交换罗赞斯基-维滕模型。在本文中,我们扩展了布鲁纳、卡克维尔、弗拉格科斯和罗根坎普关于仿射罗赞斯基-维滕模型的工作:我们展示了一个连接他们的矩阵因式2元类与$\mathscr{CRW}$的同调2元类的函子,并计算了相关的TFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher categories of push-pull spans, II: Matrix factorizations
This is the second part of a project aimed at formalizing Rozansky-Witten models in the functorial field theory framework. In the first part we constructed a symmetric monoidal $(\infty, 3)$-category $\mathscr{CRW}$ of commutative Rozansky-Witten models with the goal of approximating the $3$-category of Kapustin and Rozansky. In this paper we extend work of Brunner, Carqueville, Fragkos, and Roggenkamp on the affine Rozansky-Witten models: we exhibit a functor connecting their $2$-category of matrix factorizations with the homotopy $2$-category of $\mathscr{CRW}$, and calculate the associated TFTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信