Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, Juha Kangasluoma
{"title":"利用大气颗粒进行直接校准,并对用于 10 纳米以下颗粒测量的 PSM 2.0 进行性能评估","authors":"Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, Juha Kangasluoma","doi":"10.5194/egusphere-2024-2603","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Particle Size Magnifier is widely used for the measuring nano-sized particles. Here we calibrated the newly developed Particle Size Magnifier version 2.0 (PSM 2.0). 1–10 nm particles with different compositions were used, including metal particles, organic particles generated in the laboratory and atmospheric particles collected in Helsinki and Hyytiälä, respectively. Noticeable difference among the calibration curves was observed. Atmospheric particles from Hyytiälä required higher DEG supersaturation to be activated compared to metal particles (standard calibration particles) and other types of particles. This suggests that chemical composition differences introduce measurement uncertainties and highlight the importance of in-situ calibration. The size resolution of PSM 2.0 was characterized using metal particles. The maximum size resolution was observed at 2–3 nm. PSM 2.0 was then operated in Hyytiälä in parallel with a Half-mini Differential Mobility Particle Sizer (DMPS). During new particle formation (NPF) events, comparable total particle concentrations were observed between Half-mini DMPS and PSM 2.0 based on Hyytiälä atmospheric particle calibration. Meanwhile, applying the calibration with metal particles to atmospheric measurements would cause an overestimation of 3–10 nm particles. In terms of the particle size distributions, similar patterns were observed between DMPS and PSM when using the calibration of Hyytiälä atmospheric particles. In summary, PSM 2.0 is a powerful instrument for measuring sub-10 nm particles and can achieve more precise particle size distribution measurements with proper calibration.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"13 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct calibration using atmospheric particles and performance evaluation of PSM 2.0 for sub-10 nm particle measurements\",\"authors\":\"Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, Juha Kangasluoma\",\"doi\":\"10.5194/egusphere-2024-2603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Particle Size Magnifier is widely used for the measuring nano-sized particles. Here we calibrated the newly developed Particle Size Magnifier version 2.0 (PSM 2.0). 1–10 nm particles with different compositions were used, including metal particles, organic particles generated in the laboratory and atmospheric particles collected in Helsinki and Hyytiälä, respectively. Noticeable difference among the calibration curves was observed. Atmospheric particles from Hyytiälä required higher DEG supersaturation to be activated compared to metal particles (standard calibration particles) and other types of particles. This suggests that chemical composition differences introduce measurement uncertainties and highlight the importance of in-situ calibration. The size resolution of PSM 2.0 was characterized using metal particles. The maximum size resolution was observed at 2–3 nm. PSM 2.0 was then operated in Hyytiälä in parallel with a Half-mini Differential Mobility Particle Sizer (DMPS). During new particle formation (NPF) events, comparable total particle concentrations were observed between Half-mini DMPS and PSM 2.0 based on Hyytiälä atmospheric particle calibration. Meanwhile, applying the calibration with metal particles to atmospheric measurements would cause an overestimation of 3–10 nm particles. In terms of the particle size distributions, similar patterns were observed between DMPS and PSM when using the calibration of Hyytiälä atmospheric particles. In summary, PSM 2.0 is a powerful instrument for measuring sub-10 nm particles and can achieve more precise particle size distribution measurements with proper calibration.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2603\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2603","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Direct calibration using atmospheric particles and performance evaluation of PSM 2.0 for sub-10 nm particle measurements
Abstract. Particle Size Magnifier is widely used for the measuring nano-sized particles. Here we calibrated the newly developed Particle Size Magnifier version 2.0 (PSM 2.0). 1–10 nm particles with different compositions were used, including metal particles, organic particles generated in the laboratory and atmospheric particles collected in Helsinki and Hyytiälä, respectively. Noticeable difference among the calibration curves was observed. Atmospheric particles from Hyytiälä required higher DEG supersaturation to be activated compared to metal particles (standard calibration particles) and other types of particles. This suggests that chemical composition differences introduce measurement uncertainties and highlight the importance of in-situ calibration. The size resolution of PSM 2.0 was characterized using metal particles. The maximum size resolution was observed at 2–3 nm. PSM 2.0 was then operated in Hyytiälä in parallel with a Half-mini Differential Mobility Particle Sizer (DMPS). During new particle formation (NPF) events, comparable total particle concentrations were observed between Half-mini DMPS and PSM 2.0 based on Hyytiälä atmospheric particle calibration. Meanwhile, applying the calibration with metal particles to atmospheric measurements would cause an overestimation of 3–10 nm particles. In terms of the particle size distributions, similar patterns were observed between DMPS and PSM when using the calibration of Hyytiälä atmospheric particles. In summary, PSM 2.0 is a powerful instrument for measuring sub-10 nm particles and can achieve more precise particle size distribution measurements with proper calibration.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.