关于量子环代数的 R 矩阵实现.$U_q(D^{(2)}_n)$ 的情况

A. Liashyk, S. Pakuliak
{"title":"关于量子环代数的 R 矩阵实现.$U_q(D^{(2)}_n)$ 的情况","authors":"A. Liashyk, S. Pakuliak","doi":"arxiv-2409.02021","DOIUrl":null,"url":null,"abstract":"The connection between the R-matrix realization and Drinfeld's realization of\nthe quantum loop algebra $U_q(D^{(2)}_n)$ is considered using the Gaussian\ndecomposition approach proposed by J. Ding and I. B. Frenkel. Our main result\nis a description of the embedding $U_q(D^{(2)}_{n-1})\\hookrightarrow\nU_q(D^{(2)}_n)$ that underlies this connection. Explicit relations between all\nGaussian coordinates of the L-operators and the currents are presented.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the R-matrix realization of the quantum loop algebra. The case of $U_q(D^{(2)}_n)$\",\"authors\":\"A. Liashyk, S. Pakuliak\",\"doi\":\"arxiv-2409.02021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The connection between the R-matrix realization and Drinfeld's realization of\\nthe quantum loop algebra $U_q(D^{(2)}_n)$ is considered using the Gaussian\\ndecomposition approach proposed by J. Ding and I. B. Frenkel. Our main result\\nis a description of the embedding $U_q(D^{(2)}_{n-1})\\\\hookrightarrow\\nU_q(D^{(2)}_n)$ that underlies this connection. Explicit relations between all\\nGaussian coordinates of the L-operators and the currents are presented.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

丁杰和弗伦克尔(I. B. Frenkel)提出的高斯和分解方法,考虑了量子环代数$U_q(D^{(2)}_n)$的R矩阵实现和德林菲尔德实现之间的联系。我们的主要结果是对嵌入 $U_q(D^{(2)}_{n-1})/hookrightarrowU_q(D^{(2)}_n)$ 的描述,它是这种联系的基础。本文提出了 L 运算器的全高斯坐标与电流之间的明确关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the R-matrix realization of the quantum loop algebra. The case of $U_q(D^{(2)}_n)$
The connection between the R-matrix realization and Drinfeld's realization of the quantum loop algebra $U_q(D^{(2)}_n)$ is considered using the Gaussian decomposition approach proposed by J. Ding and I. B. Frenkel. Our main result is a description of the embedding $U_q(D^{(2)}_{n-1})\hookrightarrow U_q(D^{(2)}_n)$ that underlies this connection. Explicit relations between all Gaussian coordinates of the L-operators and the currents are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信