{"title":"最大多样化分组问题的高效邻域评估","authors":"Arne Schulz","doi":"10.1007/s10479-024-06217-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Maximally Diverse Grouping Problem is one of the well-known combinatorial optimization problems with applications in the assignment of students to groups or courses. Due to its NP-hardness several (meta)heuristic solution approaches have been presented in the literature. Most of them include the insertion of an item of one group into another group and the swap of two items currently assigned to different groups as neighborhoods. The paper presents a new efficient implementation for both neighborhoods and compares it with the standard implementation, in which all inserts/swaps are evaluated, as well as the neighborhood decomposition approach. The results show that the newly presented approach is clearly superior for larger instances allowing for up to 160% more iterations in comparison to the standard implementation and up to 76% more iterations in comparison to the neighborhood decomposition approach. Moreover, the results can also be used for (meta)heuristic algorithms for other grouping or clustering problems.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"341 2-3","pages":"1247 - 1265"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-024-06217-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient neighborhood evaluation for the maximally diverse grouping problem\",\"authors\":\"Arne Schulz\",\"doi\":\"10.1007/s10479-024-06217-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Maximally Diverse Grouping Problem is one of the well-known combinatorial optimization problems with applications in the assignment of students to groups or courses. Due to its NP-hardness several (meta)heuristic solution approaches have been presented in the literature. Most of them include the insertion of an item of one group into another group and the swap of two items currently assigned to different groups as neighborhoods. The paper presents a new efficient implementation for both neighborhoods and compares it with the standard implementation, in which all inserts/swaps are evaluated, as well as the neighborhood decomposition approach. The results show that the newly presented approach is clearly superior for larger instances allowing for up to 160% more iterations in comparison to the standard implementation and up to 76% more iterations in comparison to the neighborhood decomposition approach. Moreover, the results can also be used for (meta)heuristic algorithms for other grouping or clustering problems.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"341 2-3\",\"pages\":\"1247 - 1265\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-024-06217-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-024-06217-9\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06217-9","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Efficient neighborhood evaluation for the maximally diverse grouping problem
The Maximally Diverse Grouping Problem is one of the well-known combinatorial optimization problems with applications in the assignment of students to groups or courses. Due to its NP-hardness several (meta)heuristic solution approaches have been presented in the literature. Most of them include the insertion of an item of one group into another group and the swap of two items currently assigned to different groups as neighborhoods. The paper presents a new efficient implementation for both neighborhoods and compares it with the standard implementation, in which all inserts/swaps are evaluated, as well as the neighborhood decomposition approach. The results show that the newly presented approach is clearly superior for larger instances allowing for up to 160% more iterations in comparison to the standard implementation and up to 76% more iterations in comparison to the neighborhood decomposition approach. Moreover, the results can also be used for (meta)heuristic algorithms for other grouping or clustering problems.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.