通过图兰密度计算覆盖单插码最优密度的新界限

Oleg Pikhurko, Oleg Verbitsky, Maksim Zhukovskii
{"title":"通过图兰密度计算覆盖单插码最优密度的新界限","authors":"Oleg Pikhurko, Oleg Verbitsky, Maksim Zhukovskii","doi":"arxiv-2409.06425","DOIUrl":null,"url":null,"abstract":"We prove that the density of any covering single-insertion code $C\\subseteq\nX^r$ over the $n$-symbol alphabet $X$ cannot be smaller than $1/r+\\delta_r$ for\nsome positive real $\\delta_r$ not depending on $n$. This improves the volume\nlower bound of $1/(r+1)$. On the other hand, we observe that, for all\nsufficiently large $r$, if $n$ tends to infinity then the asymptotic upper\nbound of $7/(r+1)$ due to Lenz et al (2021) can be improved to $4.911/(r+1)$. Both the lower and the upper bounds are achieved by relating the code density\nto the Tur\\'an density from extremal combinatorics. For the last task, we use\nthe analytic framework of measurable subsets of the real cube $[0,1]^r$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New bounds for the optimal density of covering single-insertion codes via the Turán density\",\"authors\":\"Oleg Pikhurko, Oleg Verbitsky, Maksim Zhukovskii\",\"doi\":\"arxiv-2409.06425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the density of any covering single-insertion code $C\\\\subseteq\\nX^r$ over the $n$-symbol alphabet $X$ cannot be smaller than $1/r+\\\\delta_r$ for\\nsome positive real $\\\\delta_r$ not depending on $n$. This improves the volume\\nlower bound of $1/(r+1)$. On the other hand, we observe that, for all\\nsufficiently large $r$, if $n$ tends to infinity then the asymptotic upper\\nbound of $7/(r+1)$ due to Lenz et al (2021) can be improved to $4.911/(r+1)$. Both the lower and the upper bounds are achieved by relating the code density\\nto the Tur\\\\'an density from extremal combinatorics. For the last task, we use\\nthe analytic framework of measurable subsets of the real cube $[0,1]^r$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于某个不依赖于 $n$ 的正实数 $\delta_r$,在 $n$ 符号字母表 $X$ 上的任何覆盖单插入代码 $C\subseteqX^r$ 的密度不可能小于 $1/r+\delta_r$。这改进了$1/(r+1)$的体积下限。另一方面,我们观察到,对于所有足够大的 $r$,如果 $n$ 趋于无穷大,那么 Lenz 等人(2021 年)提出的渐近上限 $7/(r+1)$ 可以提高到 $4.911/(r+1)$。下限和上限都是通过将代码密度与极值组合学中的 Tur\'an 密度相关联来实现的。对于最后一项任务,我们使用了实立方$[0,1]^r$的可测子集的分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New bounds for the optimal density of covering single-insertion codes via the Turán density
We prove that the density of any covering single-insertion code $C\subseteq X^r$ over the $n$-symbol alphabet $X$ cannot be smaller than $1/r+\delta_r$ for some positive real $\delta_r$ not depending on $n$. This improves the volume lower bound of $1/(r+1)$. On the other hand, we observe that, for all sufficiently large $r$, if $n$ tends to infinity then the asymptotic upper bound of $7/(r+1)$ due to Lenz et al (2021) can be improved to $4.911/(r+1)$. Both the lower and the upper bounds are achieved by relating the code density to the Tur\'an density from extremal combinatorics. For the last task, we use the analytic framework of measurable subsets of the real cube $[0,1]^r$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信